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Abstract

Any process can be seen as an algorithm; its power and its limits can then be analysed with the

techniques of theoretical computer science. To analyse algorithms, we divide the world in two: the

problem space that shapes what might happen and the dynamics of what does happen. If we fix an

idealised framework for one of the two, then we can obtain powerful general results by abstracting

over the other. This “algorithmic lens” can be used to view both artificial and natural processes,

including the natural processes of biological evolution.

In Part I, I idealize the space of evolution as a fitness landscape so that I can abstract over the pos-

sible evolutionary dynamics. I show that fitness landscapes can be represented by gene-interaction

networks that encode the structure of epistasis.

For some landscapes, the epistatic structure produces a computational constraint that prevents

evolution from finding even a local fitness optimum—thus contradicting the traditional assump-

tion that local fitness peaks can always be reached quickly by natural selection. I introduce a

distinction between easy landscapes, where local fitness peaks can be found in a moderate number

of steps, and hard landscapes where finding any such local optimum requires an infeasible amount

of time. Hard examples exist where strong-selection weak-mutation dynamics cannot find a local

peak in polynomial time, even when it is known to be unique. More generally, I show that hard

fitness landscapes exist where no evolutionary dynamics—even ones that do not follow adaptive

paths—can find a local fitness optimum in polynomial time. Moreover, on hard landscapes, the fit-

ness advantage of nearby mutants cannot drop off exponentially fast but must follow a power-law,

similar to the one found by long-term evolution experiments, associated with unbounded growth in

fitness. Thus, the constraint of computational complexity enables open-ended evolution on finite

landscapes. I present candidates for hard landscapes at scales from single genes, to microbes, to

complex organisms with costly learning (Baldwin effect) or maintained cooperation (Hankshaw ef-

fect). Finally, by looking closer at the fine structure of epistasis, I also extend the class of provably

easy landscapes to include all those with tree-structured gene-interaction networks.

In Part II, I idealize the dynamics of evolution as replicator dynamics so that I can abstract

over the space of ecologies (interactions between organisms). This requires replacing the fitness-as-

scalar concept used in fitness landscapes by a fitness-as-function concept derived from evolutionary

game theory. Since they have not been adequately defined or interpreted in the context of micro-

scopic biology, I provide two interpretations of the central objects of game theory: one that leads
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to what I call “reductive games” and the other to “effective games”. These interpretations are

based on the difference between views of fitness as a property of tokens versus fitness as a sum-

mary statistic of types. Reductive games are typical of theoretical work like agent-based models.

Effective games correspond more closely to experimental work and allow for empirical abstraction

over poorly characterized interaction mechanisms like spatial structure.

This empirical abstraction allows me to analyse the in vitro evolution of resistance to cancer

therapy. I develop a game assay to directly measure effective evolutionary games in co-cultures of

non-small cell lung cancer cells that are sensitive vs resistant to the targeted drug Alectinib. I show

that the games are not only quantitatively different between different environments, but that the

presence of the drug or the absence of cancer-associated fibroblasts qualitatively switches the type

of game being played by the in vitro population. This observation provides empirical confirmation

of a central theoretical postulate of evolutionary game theory in oncology: we can treat not only

the player, but also the game.

Thus through the whole thesis, I demonstrate how the algorithmic lens and abstraction can help

us derive new ways of seeing and understanding both evolution and ecology.
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Chapter 1

Introduction:

evolution as algorithm

Evolutionary biology and theoretical computer science are fundamentally interconnected. Already

in the 19th-century work of Charles Darwin and Alfred Russel Wallace, we can see the emergence

of concepts that theoretical computer scientists now hold as central to our discipline: concepts like

asymptotic analysis, the role of algorithms in nature, distributed computation, and analogy from

man-made to natural control processes. By recognizing evolution as an algorithm, we can continue

to apply the mathematical tools of computer science to solve biological puzzles — to build an

algorithmic biology (a term previously used in a similar setting by Richard Watson [225] and Seth

Bullock [24]). That is my goal in this thesis.

In this introductory chapter, I take a historical view to motivate my approach to algorithmic

biology. Although theoretical computer science is not yet being widely used to structure biological

theory, I think there is a lot of historical precedent for building a tighter coupling between the

mathematics of computer science and evolutionary biology. I outline the historic and current

rational for this in the first four sections of this introduction. If you are not interested in a

historic overview or if you are already convinced that theoretical computer science can offer a lot

to biology then it is safe to skip these first four sections. In Section 1.1, I rehearse the Malthusian

argument that prompted Darwin and Wallace to develop the concept of the struggle for existence

as the engine of evolution. I stress that this argument has the same sort of asymptotic separation

structure that theoretical computer scientists are used to seeing. In Section 1.2, I go into more

detail about how the idea of natural selection was developed. I stress that natural selection is the

abstraction of a practical algorithm that had been developed for animal breeding. In Section 1.3, I

1
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explore the difference between traditional computational biology and the algorithmic biology that

is the focus of this thesis. In Section 1.4, I draw a parallel between the development of physics and

my proposal for how this area of theoretical computer science should aim to develop as a field.

The remaining three sections of the introduction are about the general contribution of this

thesis. I discuss the central methodological contribution in Section 1.5, where I make the distinction

between idealization and abstraction in mathematical models. Abstraction is the primary unifying

theme of this work, and here I introduce both the theoretical abstraction of Part I of the thesis (in

Section 1.5.1) and the empirical abstraction of Part II (in Section 1.5.2). In Section 1.6, I shift from

methodology to a discussion of the biological theme of this thesis: the structure of fitness. Finally,

in Section 1.7 I discuss the work that serves as my contemporary motivation, set out the main

contributions of this thesis, and give a detailed mapping between the chapters and my published

work.

The rest of the thesis is structured in two main parts. Part I (Chapters 2 to 5) is about the

computational complexity of fitness landscapes, and Part II (Chapters 6 to 8) is about the use of

evolutionary game theory in oncology. Both are building on the legacy of Darwin, Wallace and

the many evolutionary biologists since them.

1.1 Malthus and asymptotic arguments

Before I turn to Darwin and Wallace, let us read from one of the works that inspired them, Malthus’

Essay on the Principle of Population [140]:

Population, when unchecked, increases in a geometric ratio. Subsistence increases only

in an arithmetical ratio. A slight acquaintance with numbers will show the immensity

of the first power in comparison of the second

Computer scientists will recognise the above as an asymptotic argument. Although Malthus goes

on to estimate the exact geometric ratio involved, he also recognises that specifics are not essential

to his argument, and that given any geometric factor greater than 1, and any arithmetic factor,

eventually the geometric growth would surpass the arithmetic. Malthus was using the fact that

– asymptotically – exponentials grow faster than linear and then building a theory on top of this

asymptotic separation.

Darwin and Wallace saw the importance of this observation. They also recognised that the

essential aspect of it was the asymptotic separation. It did not matter which particular resources

implemented the limiting factor. More importantly, it did not even matter what specific sub-

exponential function those resources scale with – just that is was sub-exponential. They abstracted
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Malthus’ principle as the basis for the struggle for existence. The also defined the multiply-

realizable concept of fitness as the measure of which organisms would fare better or worse in this

struggle. With this they provided an abstract cause and continued driver for natural selection.

These are also the central unifying themes for my thesis: abstraction, fitness, and open-ended

evolution.

1.2 Bakewell to Darwin and ‘artificial’ to natural selection

Today, when we make appeals to evolution, we usually place natural selection as primary. For

example, when we describe evolutionary medicine, we use terms like ‘using natural selection to

achieve therapeutic goals’. In other words, we use a natural process to achieve our artificial goals.

This is similar to how one might use the flow of the river to turn a mill.

But this was not the direction from which Darwin approached evolution. Instead, he started

with domestication before moving on to variation in nature, laying out the struggle for existence,

and only then – in Chapter 4 of On the Origin of Species [40] – did he finally define natural

selection. It is only after this, late in Chapter 4, that he refers to domestication as ‘artificial’

selection.

Structurally, Darwin’s argument proceeds from looking at the selection algorithms used by

humans and then abstracting it to focus only on the algorithm and not the agent carrying out

the algorithm. He realised that the breeder’s role as selector can be replaced by another actor:

the struggle for existence. He sees the importance of the algorithm of selection and that it can be

implemented in many ways. In other words, he sees that evolution is realisable in multiple ways.

It is only after we have already accepted Darwin’s explanation that we proceeded to reify natural

selection and redefine or explain artificial selection in reference to it.

The flow of ideas clearly went from technology (animal husbandry) to theory (evolution). But

there is a problem with my story: domestication of plants and animals is ancient. Old enough that

we have transmissible cancers that arose in our domesticated canine helpers 11,000 years ago and

persist to this day [155]. Domestication in general – the fruit of the first agricultural revolution

– can hardly qualify as a new technology in Darwin’s day. It would have been just as known to

Aristotle, and yet he thought species were eternal.

Why wasn’t Aristotle or any other ancient philosopher inspired by the agriculture and animal

husbandry of their day to arrive at the same theory as Darwin?

The ancients did not arrive at the same view because it was not the domestication of the first

agricultural revolution that inspired Darwin – it was something much more contemporary to him.
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Darwin was inspired by the British agricultural revolution of the 18th and early 19th century.

Here, I want to sketch this connection between the technological development of the Georgian

era and the theoretical breakthroughs in natural science in the subsequent Victorian era. The

history will be brief as I will focus only on the part relevant to evolution as algorithm.

What was the British agricultural revolution? Was it even seen as a revolution in its own time

or recognized only in hindsight? For this, we can turn to Victorian texts. We can see a description

of the revolution directly in Darwin’s writings. For example, in his October 1857 letter to Asa

Gray, Darwin writes [25]:

[s]election has been methodically followed in Europe for only the last half century

The emphasis is in the original and ‘methodical’ is key. The innovation that Darwin is alluding

to originated in Leicestershire with Robert Bakewell, who built a mechanistic approach to agricul-

ture. Not the replacement of farm workers by machines, but the methodical scientific approach to

agriculture. The introduction of methodical inductive empiricism.

In particular, Bakewell is most remembered for the Dishley system – known today as line

breeding or breeding in-and-in. Prior to Bakewell, livestock of both sexes were kept together

in fields. This resulted in natural assortment between the livestock and did not easily produce

systematic traits in the offspring – to the casual onlooker, the traits in the offspring of these

populations would be diverse and seemingly random. Bakewell separated the sexes and only

allowed deliberate, specific mating. This allowed him to more easily and rapidly select for desired

traits in his livestock [80].

During the 35 years from Robert Bakewell inheriting his father’s farm in 1760 to his own death

in 1795, he developed several new breeds of livestock including new kinds of sheep, cattle, and

horses [80, 204]. It was apparent to any observer that these were different variations on species.

For example, they produced more wool, gained more weight more quickly, and were easier to work

with than prior livestock. During Bakewell’s lifetime, the average weight of bulls at auction is

reported to have doubled [182, 204].

The Dishley system — i.e., Bakewell’s algorithm — clearly produced new varieties. These new

varieties raised two puzzles for the naturalists. The first puzzle was an algorithmic one: was a

human breeder required to implement Bakewell’s algorithm, or was this always taking place even

without human intervention? The second puzzle was biological: can the variants established by

this algorithm persevere and depart from each other indefinitely, or will they always revert to a

common type when selection is relaxed? Darwin answered both these questions. I will discuss

Darwin’s answer to the algorithmic section here and save the biological question for Section 1.6.1.
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In recognizing (artificial) selection, Darwin was not extracting an implicit algorithm from a

long-held human practice. Rather, he was taking an explicit algorithm advocated and practiced by

his contemporaries. In his On the Origin of Species, Darwin [40] explicitly acknowledges Bakewell’s

demonstration of variation under domestication, and even discusses the branching of Bakewell’s

variations under the breeding of different farmers (Buckley vs. Burgess; see Chapter 1 of Darwin

[40]).

Darwin’s contribution to Bakewell’s algorithm was abstracting it: recognizing that the agent

that implements the algorithm is irrelevant. We do not need to have Robert Bakewell or another

agriculturalist do the selecting. Instead, we can have a distributed agent like the “struggle for

existence”. It is this algorithmic abstraction that allowed Darwin to revolutionize how we think

about nature. But it was the latest technology of his day that led him there. Darwin took a human

algorithm and asked if it can also explain nature.

In other words, Darwin’s approach was to project onto nature the human algorithm correspond-

ing to the actions of breeders. Like a computer scientist or mathematician today, he was using his

understanding of human procedures to look at nature.

Bakewell’s contribution to the technology of agriculture and influence on the future of evolu-

tionary theory extends beyond breeding. And it extends beyond his direct influence on Darwin’s

philosophical contribution: Bakewell also established experimental plots on his farm to test dif-

ferent manure and irrigation methods. This practice was part of the inspiration for John Bennet

Lawes’ establishment of the Rothamsted Experimental Station in 1843 for carrying out long-term

agricultural experiments [201].

Bakewell introduced the experimental approach to evolution that I will be continuing to build on

theoretically in Chapter 2 and empirically in Chapter 7. In fact, it is not only inspiration that the

Rothamsted Experimental Station offers: their 1856 Park Grass Experiment is still ongoing [201].

Although in this thesis I will rely on more contemporary experiments: in Chapter 2, I will turn

to Lenski’s 30+ year long-term evolution experiment with E. coli [231, 127]. In Chapter 7, I will

discuss short evolutionary experiments in cancer carried out by my colleagues and me [119]. And

I will link both to mathematics.

1.3 Imagination and (computational vs algorithmic) biology

Bakewell and Darwin did not mathematically formalise their insights in the way that theoretical

computer scientists might today. For Darwin, this was probably because he did not see himself as

a mathematician and even wrote in his autobiography [15] that:
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During the three years which I spent at Cambridge... I attempted mathematics... but

got on very slowly. The work was repugnant to me, chiefly from my not being able

to see any meaning in the early steps in algebra. This impatience was very foolish,

and in after years I have deeply regretted that I did not proceed far enough at least to

understand something of the great leading principles of mathematics, for [people] thus

endowed seem to have an extra sense. But I do not believe that I should ever have

succeeded beyond a very low grade. ... in my last year I worked with some earnestness

for my final degree of B.A., and brushed up ... a little Algebra and Euclid, which later

gave me much pleasure, as it did at school.

The Rothamsted Experimental Station that Bakewell inspired is perhaps best known for its the-

oretical contribution to evolutionary biology during the 14-year tenure (1919–1933) of Ronald

Fisher. While at Rothamsted, Fisher developed the statistics and population genetics of the mod-

ern evolutionary synthesis to make sense of the data from these ongoing evolutionary experiments.

Today, Fisher is remembered as an authority on both mathematics and biology.

In the preface to one of the first works of mathematical biology, Fisher [49] devotes some space

to the differences between mathematicians and biologists. For Fisher, those early steps of algebra

that Darwin found so repugnant are not the foundation of mathematics, but rather a practical

technique. The manipulation of mathematical symbols is “comparable to the manipulation of the

microscope and its appurtenances of strains and fixatives” [49]. He observed that this difference

in tools of the trade is real, but superficial.

The substantive difference between mathematicians and biologists is in how their imagina-

tion was trained. The biologist’s imagination is trained on the complexity of the actual and the

particular [49]:

[biologists] are introduced early to the immense variety of living things; their first

dissections, even if only of the frog or dog fish, open up vistas of amazing complexity

and interest.

The mathematician’s imagination, instead, is trained on the elegance of the abstract [49]:

The ordinary mathematical procedure in dealing with any actual problem is, after

[idealizing] what are believed to be the essential elements of the problem, to consider

it as one of a system of possibilities infinitely wider than the actual, the essential

relations of which may be apprehended by generalized reasoning, and subsumed in

general formulae, which may be applied at will to any particular case considered.
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In other words, biologists see the actual particular complexity of the world, while mathematicians

idealize (‘the essential elements’) and then abstract (‘consider it as one of a system... infinitely

wider’) the world.

Darwin could see both the particular and the abstract structure in the world. I think that

this ability to not lose the particular while reasoning abstractly is one of the important factors

that allowed a break from Aristotelian biology. I do not need to rehearse Darwin’s mastery of the

particular – there is no doubt that he was a good naturalist. But I hope this chapter also highlights

Darwin’s mastery of the abstract – the ideas on which the algorithmic biology of this thesis aims

to build.

Science had to wait from Darwin until Fisher and his contemporaries around the 1930s for the

mathematical theory of evolutionary biology to take shape in the form of the modern synthesis. The

modern synthesis developed at the same time as computer science. From the beginning there was

interaction between theoretical computer science and biology – just look at Alan Turing’s highly

influential work on morphogenesis [218], or his unpublished work on neural networks and artificial

life. Since then, however, the connection has largely focused on tools and practical concerns; on

computational biology. In most cases, computational biology has largely taken computer science

as offering a set of practical computational techniques to the working biologist. It has automated

that repugnant algebra but it does not push for the different kind of imagination that Fisher

identified. Computational biology has made the practical tools of computer science into a new

kind of microscope for biologists – a set of techniques so ubiquitous that Markowetz [141] can even

argue that all biology is computational biology.

But there is an alternative to traditional computational biology that uses theoretical computer

science and the algorithmic lens. The algorithmic lens is not about computers or computer pro-

grams – in the same way that astronomy is not about telescopes and that thermodynamics is not

about steam engines. Rather, the algorithmic lens highlights the fact that our theories, models

and hypotheses are a kind of algorithm in their own right. Thus, we can use the conceptual tools

built by theoretical computer scientists for analysing and designing algorithms to instead evaluate

and refine our scientific theories, models, and hypotheses.

Evolution is such an algorithm. And we can analyse it using the tools of theoretical computer

science. This is algorithmic biology.

Whereas computational biology is a practical branch of biology, algorithmic biology is a theo-

retical branch of biology. Algorithmic biology is a suite of mathematical techniques and a philo-

sophical disposition taken from theoretical computer science and applied to the conceptual objects

of evolutionary biology. This mirrors Fisher’s view of the particular vs abstract imagination. A
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thesis in computational biology might feature simulations, data crunching, and computer programs

as central characters. This thesis, especially in the second part, will feature some of this. Primar-

ily, though, this text is a work of algorithmic biology and will thus be centred around theorems,

lemmas, proofs and conceptual analysis.

As a branch of theoretical biology, it is important for algorithmic biology to engage with con-

temporary questions and models in biology. Although this introductory chapter explores history,

the subsequent two parts of the thesis will engage the contemporary biological literature. I will

introduce and discuss this literature in the chapters that it becomes relevant, rather than here.

1.4 From perpetual motion machines to the halting problem

There seems to be a longstanding tendency to use the newest technology of the day as a metaphor

for making sense of our hardest scientific questions. These metaphors are often vague and imprecise.

They tend to overly simplify the scientific question and also misrepresent the technology. This is

not useful. And this is not what I aim to do with computation and biology in this thesis.

But the pull of metaphors to the latest technology does at least have a beneficial tendency to

transform the technical disciplines that analyze this technology into fundamental disciplines that

analyze our universe. This was the case for many aspects of physics, as I will discuss below, and I

think it is currently happening with aspects of theoretical computer science. This is very useful –

so this is what I aim to work towards with the algorithmic biology of this thesis.

If we go back to Darwin and Wallace, then the inspiration on evolution from technology was

not limited to agriculture. Steam engines – the other new technology of their day – also make

an appearance in the first publication of natural selection in 1858 [41]. In his section, Alfred

Russel Wallace writes that the “action of [natural selection] is exactly like that of the centrifugal

governor of the steam engine, which checks and corrects any irregularities almost before they

become evident.” He was proposing an analogy to another recent technology; the centrifugal

governor – a self-feedback system – introduced into common usage by James Watt in 1788.

In the next section, we will go back in time to the birth of modern machines – to the water

wheel and the steam engine. I will briefly sketch how the science of steam engines developed and

how it dealt with perpetual motion machines. From here, we will jump to the analytic engine

and the modern computer. I will suggest that the development of computer science has followed a

similar path — with the Entscheidungsproblem and its variants playing the role of the perpetual

motion machine. This will also let me introduce the sort of abstraction over arbitrary dynamics

that I will rely on in the first part of the thesis, especially in Chapters 2 and 4.
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Figure 1.1: Wood engraving of Robert Fludd’s 1618 “water screw” perpetual motion
machine [44, 5]. The machine was intended to perpetually drive a millstone. The idea was
that water from the top tank turns a water wheel (bottom-left), which drives a complicated series
of gears and shafts that ultimately rotate the Archimedes’ screw (bottom-center to top-right) to
pump water to refill the tank. The rotary motion of the water wheel also drives two grinding
wheels (bottom-right) and is shown as providing sufficient excess water to lubricate them. If built,
this machine would not work as intended and would not perpetually produce useful work.

The science of steam engines successfully universalized itself into thermodynamics and statis-

tical mechanics. These are seen as universal disciplines that are used to inform our understanding

across the sciences. Similarly, I think that we need to universalize theoretical computer science

and make its techniques more common throughout the sciences. This thesis – especially the first

part – will focus on the universal consequences and constraints of computation on biology.

1.4.1 Machines and the conservation of energy

As machines started to do more work for us, and as they became increasingly more efficient, it

became natural to ask: will these machines ever stop? Can we make machines that do more work

than we put in? Can we make perpetual motion machines?

We can see people already trying to make perpetual motion machines with water power as early

as the start of the 1600s. For example, see Robert Fludd’s 1618 sketch of a water screw perpetual

motion machine in Figure 1.1. He imagined the top tank draining to turn a water wheel. The

water wheel then cranked a shaft which both turned a millstone to do useful work and powered an

Archimedes’ screw that pumped water from the lower tank back up to the upper.

This certainly sounds, on first hearing, like it could work. We just need to get the gears running

smoothly enough; right?
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We find this laughable now, but that was the mindset for a lot of serious thinkers at the time.

As steam engines were developed and proliferated by the late 1700s, the excitement for perpetual

motion machines only heightened. With so much mysterious power coming from coal, and newer

and newer machines requiring less and less coal to do more and more work. It was easy to think

that surely it would be possible to push past the point of 100% efficiency into free energy. It was

easy to speculate about this at the time, since the steam engine itself was poorly understood. It

lacked a solid theoretical and scientific grounding.

Of course, scientists were also very interested in these engines and they developed the ground-

work for making sense of steam and other engines alongside the excitement for perpetual mo-

tion. But a modern science of steam engines was not really formed until around 1824 when Sadi

Carnot published Reflections on the Motive Power of Fire and on Machines Fitted to Develop that

Power [27]. This was the birth of the modern technical discipline: thermodynamics.

This did not stop inventors from working on perpetual motion machines, but more sober-

minded scientists and engineers started to suspect that it might not be possible to ever build such

machines. By 1856, Rudolf Clausius had formulated empirical principles which have since become

the first laws of thermodynamics. From these empirical principles, one could finally argue that

perpetual motion powering an external system was impossible.

But it was not clear how these empirical principles (or – in the terminology of Chapter 6 –

effective theories) arose: maybe a new finding or a new type of engine could overturn them? Maybe

we just needed to be more creative with the kinds of machines we considered. Just how widely

could these empirical principles apply? Could they be explained or derived from simpler ideas?

From the 1870s until the publication of his 1886 Lectures on Gas Theory, Ludwig Boltzmann

developed a statistical mechanics to explain these empirical principles. He grounded these laws in

statistics of the Newtonian laws that were seen at the time as foundational.

Finally, in 1918, Emmy Noether published her groundbreaking theorem that every differentiable

symmetry of the action of a physical system has a corresponding conservation law [158]. Now we

knew that the conservation of energy was not some odd empirical hypothesis open for challenge.

Rather it was a consequence of the form of our physical laws. Conservation of energy was a

consequence of invariance of our physical laws under time translations.

Putting all these ingredients together, we could be certain that perpetual motion machines were

epistemically impossible. Their existence – in any form – is incompatible with our laws of physics.

But notice how these laws broadened. We started from reasoning about particular machines and

particular experiments. We started from a science of steam engines and we ended at fundamental

reality. Today, we use thermodynamics and statistical mechanics in all kinds of domains that have
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nothing to do with steam engines. A narrowly defined technical discipline has grown to be about

the whole universe — and we now respect it as a useful tool and sanity check in all our other

scientific disciplines.

1.4.2 Algorithms and the complexity of computation

A similar story has developed in computer science, except instead of steam engines, we have

algorithms.

In the late 1800s, formal methods in mathematics were improving quickly. Just like improve-

ments to steam engines emboldened the mechanics and inventors, these formal improvements em-

boldened mathematicians and logicians. After all, they were finding procedures for computing the

solutions to more and more difficult mathematical problems. By 1928, Hilbert and Ackermann in

Grundzüge der Theoretischen Logik asked the Entscheidungsproblem [77]:

What is the procedure that determines for each logical expression for which domains

it is valid or satisfiable?

This was the computer science equivalent of asking “What is the design for the perpetual machine?”

Thankfully for computer science, it took less time to find their version of Emmy Noether – i.e.

Church, Turing, and Post. This was probably because mathematicians were already looking for

formal rather than empirical answers. By 1936 these mathematicians showed the impossibility of

Hilbert’s dream: there exists no algorithm that can solve the Entscheidungsproblem [31, 217, 181].

In particular, it was shown that there were concrete problems – most notably the Halting

problem – that no algorithm could solve, at least not in the general case. This was the computer

science version of the conservation of energy: a barrier that prevented the wonders we desired

and naively imagined as possible. Just like Noether, the computer scientists showed that this

complexity limit was a consequence of our logical laws. An algorithm for solving the Halting

problem – just like the perpetual motion machine – was epistemically impossible.

Since then, computer science has expanded our understanding of the limits of computation and

we now have a richer web of belief on which problems are tractable – i.e., have algorithms that run

in polynomial time – and which are intractable. Unfortunately, this web is still centred around a

number of conjectures (like P vs NP, or the FP vs PLS conjecture I rely on in Chapter 4) that are

strongly believed but not formally resolved [112].

Just like with thermodynamics and statistical mechanics breaking free of steam engines, com-

puter science is rebelling against a view of itself as a specialized technical discipline dealing just

with human-made ‘algorithm engines’. As with thermodynamics’ use of statistical mechanics to



12 CHAPTER 1. INTRODUCTION: EVOLUTION AS ALGORITHM

ground itself in Newtonian mechanics, the easiest way to universalize computer science was to

ground itself in physicalism. This was achieved with Gandy’s physicalist variant of the Church-

Turing thesis [103, 51]. Its intuitive statement is that any function computable by a physical

machine is computable by a Turing machine. A more operationalized statement might be that the

statistics of measurement for any repeatable physical process can be approximated arbitrarily well

by a Turing machine.

Of course, this is not the only way to universalize theoretical computer science. Personally, I

prefer Post’s cognitivist variant of the CT-thesis: Turing Machines or other equivalent forms of

computation capture what is thinkable by us, and express the restriction of our finite understand-

ing—[181, 110]. In other words, theoretical computer science is the ultimate tool for analyzing our

theories, models, and hypotheses.

As theoretical computer science universalizes itself it seeks – just like thermodynamics and

statistical mechanics before it – uses for its mathematical tools in the domains of other disciplines.

If we recognize theoretical computer science as foundational, then we open a whole new toolbox for

understanding the universe. This is a good resource for other sciences and also a great motivation

for theoretical computer science. It is this ability of computer science to abstract over arbitrary

algorithms – much how Noether could abstract over arbitrary physical machines – that allows me

to consider computational constraints on arbitrary evolutionary dynamics in Chapters 2 and 4.

1.5 Idealization vs abstraction

As we saw with Darwin and Wallace, in defining the struggle for existence and fitness, they ab-

stracted over the specific details that implement that struggle and fitness for any particular popu-

lation. But this was in a verbal argument. In formal mathematical models, biologists tend to use

idealization rather than abstraction.

To explain the distinction between idealization and abstraction, let us imagine the various

populations studied in evolutionary biology as the miscellaneous collection of triangles in Figure 1.2.

We can think of each of these triangles as representing a different biological process that implements

evolution. In particular, let us think of each triangle as a different population with its own structure,

demography, standing genetic variation, etc. and thus its own corresponding evolutionary dynamic.

In the top left corner, the green triangle might correspond to a bee colony with a very specific

and strange sex ratio. Over on the bottom right, the orange triangle might be a biofilm of slime

mold with their complicated spatial structure. Maybe the blue triangle is a population of antelope

undergoing range expansion. We could go on and on. For every empirical population studied by a
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Triangle: Region bounded by any three lines 
that intersect in exactly three distinct points

Idealization Abstraction

Figure 1.2: How different biological populations (triangles) can be treated via idealization vs
abstraction. Figure from Kaznatcheev [105].

biologist, we might imagine a corresponding triangle.

The point is that they each have some very particular details. These can be very different

for each evolutionary dynamic. Biologists deal with this complexity by idealizing: we pick a

particularly simple or convenient evolutionary dynamic, one that we think is ‘general’. Something

like using an equilateral triangle as a stand-in for the mess of real triangles. We will often argue

that this particularly simple model gets at the ‘essence’ of all evolutionary dynamics. But, in

reality, our choice is often guided by our methods. We pick the equilateral triangle – for an actual

mathematical biologist this might be something like the strong-selection weak-mutation dynamics

– because we have the mathematical skills necessary to analyze it. And, from then on, we suppose

that all evolutionary dynamics are an equilateral triangle and analyze them as such.

If we end up talking with more experimentally oriented colleagues, we might say: “oh yeah,

this is kind of like the green bee colony”. But our colleague might study slime molds and we

would have to admit that it is not so much like the orange slime mold triangle. At that point,

the resourceful modeler might offer to deform their idealized triangle to get one that looks more

like the slime molds. So, we end up endlessly modifying our idealized models with various features

that we want to add or take into consideration. In practice this is made extra difficult by our lack

of knowledge about what kinds of triangles actually occur in nature.

From my experience this idealization approach is the more common approach in theoretical and

mathematical biology. But it is not the only approach that we can take. The main contribution
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Figure 1.3: Darwinian engine powering (a) eco-evolutionary dynamics alongside its
theoretical (b) and (c) empirical abstractions. The bottom cycle of (a) captures the struggle
for existence (it is inspired by similar figures from presentations by Joachim Krug and Amitabh
Joshi), and the top cycle of (a) captures the genesis of new variants. Panel (b) is the theoretical
abstraction of (a) that I use in Part I of the thesis for studying evolution on fitness landscapes.
Panel (c) is the empirical abstract of (a) that I use for Part II of the thesis to study cancer ecology
by measuring evolutionary games. The idealizations that allow the projections are represented
by dashed arrows. The dotted line shows how each projection can be divided into algorithm vs
problem. This same figure repeats later as Figure 9.1.

and primary unifying theme of my thesis is to provide abstract as an alternative to idealization

inspired by the techniques of theoretical computer science.

Of course, both idealization and abstraction are processes and they have to start somewhere.

It is easy to point out, for example, that maybe real populations are not actually triangles because

they have rounded corners or non-straight sides. As such, we need to take some space of possibilities

as the starting point. In the case of this section, that starting point is triangles. In the case of

the thesis, that starting point is the Darwinian engine in Figure 1.3 (revisited in more detail in

Chapter 9). The engine in Figure 1.3a is made of two cycles that together change the distribution of

genotypes. On the top is the genesis of new variants via the 1-arc mutation cycle. On the bottom is

the struggle for existence via the 3-arc development-ecology-selection cycle. Figure 1.3a is already

a simplification of the kinds of feedbacks that evolutionary biologists care about. Even in this

simplification, a lot of details are hidden in each edge. This opens the door for both idealization
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(the replacement of a given edge by a ‘typical’ or easy to handle instantiation of it) and abstraction

(reasoning about arbitrary instantiations of an edge). But first, let me return to triangles.

1.5.1 Theoretical abstraction and fitness landscapes

Instead of making an idealization, I want to follow the route of abstraction. To do this, we can just

note that all the shapes we drew are triangles in Figure 1.2 and then see what we can conclude

from properties that all triangles have in common. Any conclusion drawn in this way has the

upside of being multiply realizable, the abstract conclusion can be implemented by many particular

triangles and we do not need to know the details of each particular implementation to know that

the conclusion will hold.

Unfortunately, abstraction comes with some downsides. First, it means that we cannot get

certain specific results. We can say much more about a specific equilateral triangle than we can

about an arbitrary triangle. Second, we lose some things. An equilateral triangle is a concrete

triangle, it ‘looks’ like a triangle. An equilateral triangle ‘resembles’ the triangles it is modeling.

The concept of triangle, however, is not a concrete triangle. It does not ‘look’ like anything. It

does not ‘resemble’ the system it models. Rather, it specifies a language in which that system can

be expressed – something like the logical specification: ‘region bounded by any three lines that

intersect in exactly three distinct points’. Thus, the abstraction can be of a different kind than

the things it abstracts over and we need different tools for dealing with this.

How do we reason about arbitrary triangles? Or in the case of my thesis: how do we reason

about arbitrary evolutionary dynamics with arbitrary population structures, etc? This is where

the tools of theoretical computer science come in. In particular, I use theoretical abstraction. This

is the first part of the thesis.

In this first part, I combine standard idealizations with novel abstractions. I visualize this as the

projection of Figure 1.3a to the right as Figure 1.3b. In a standard move for evolutionary biologists,

I idealize environments and abstract genotype-to-phenotype-to-fitness maps as fitness landscapes

(the dashed line in Figure 1.3b) – i.e., as a map from genotypes to scalar fitness alongside some

notion of genetic ‘proximity’. This fitness landscape then serves as the ‘problem’ to be ‘solved’ by

evolution. In a slight twist in Chapter 3, I train the mathematician’s imagination on this standard

view of fitness landscapes by focusing on all possible fitness landscapes that are expressible given a

certain reasonable compact representation (based on valued constraint satisfaction problems [224,

84]).

The truly novel move for evolutionary biologists – a move familiar to theoretical computer

scientists – is my abstraction over all possible evolutionary dynamics on these fitness landscapes.
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Instead of reasoning about only specific idealized selection-mutation operations like fittest-mutant

strong selection weak mutation dynamics, I prove results about any possible evolutionary dynamic.

In Chapter 2, I introduce the ultimate constraint of computation that creates ‘hard’ fitness land-

scapes on which no evolutionary dynamic can find a local fitness peak in polynomial time. This

chapter is largely conceptual with theorems referenced and interpreted but detailed proofs saved

for later chapters. In Chapter 4, I present these proofs for arbitrary abstract evolutionary dynam-

ics and I also present some concrete constructions of fitness landscapes that are hard for specific

idealized evolutionary dynamics. Finally, in Chapter 5, I turn to the question of parametrized

complexity and ask what restrictions have to be placed on our language for describing fitness land-

scapes in order that we can only describe ‘easy’ landscapes where local fitness peaks can be found

quickly by any simple evolutionary dynamics.

Overall, this first part of the thesis is focused on theory. Although I do present some poten-

tial candidates for hard fitness landscapes occurring in nature, and even outline an algorithm in

Section 3.7.1 for learning the representations of fitness landscapes from data, there are no actual ex-

periments in Part I. The methodological theme of this part is largely theoretical: I use abstraction

to expand the theorist’s imagination.

1.5.2 Empirical abstraction and evolutionary games

But abstraction can also help with experiment, not just theory. That is the second part of the

thesis.

In the language of triangles, we might care about some specific property of triangles like their

area. Normally, we would find this area by measuring all three sides or measuring two sides

and the angle between them. Then from these reductive measurements we would compute the

effective area. In the context of evolutionary dynamics – especially in the context of evolutionary

game theory (EGT; which I overview in Chapter 6) – a particular example might correspond to

knowing the pairwise interaction between strategies and then running that interaction over some

spatial structure to get some surprising prediction about which strategy comes to dominate the

population following this particular spatially structured evolutionary dynamic. As I discuss in

Chapters 6 and 8, this direction from reductive to effective has been the standard approach in

much of evolutionary game theory.

But do we need to always measure these reductive details that identify a particular triangle?

After all, many triangles have the same area. And if we only care about the area then we do not

need to know which particular combination of side-lengths resulted in our area. Especially if we

can come up with a clever way to measure area directly without measuring side lengths.
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I do not know how to do this for the area of triangles, but I do develop the game assay in

Chapter 7 to do this for effective evolutionary games. I do this by idealizing the selection-mutation

process and the genotype-phenotype map as replicator dynamics, treating this as an algorithm and

asking ‘what problem is it solving?’. The answer to this becomes an abstraction over ecology that

I express in the language of evolutionary games. I visualize this as the projection of Figure 1.3a

to the bottom as Figure 1.3c.

This approach can be useful in cancer research where we might care about the outcome for a

patient – a global effective property –— but not know the details of the interactions going on within

the tumour – the local reductive game. In this case, we want a process like the game assay to

measure the global effective game without first having to learn the reductive game and the details

of the population structure that transforms it. That is why Chapter 7 concentrates on measuring

the games played by non-small cell lung cancer.

Evolutionary game theory (EGT) also provides some of the clearest examples of multiple re-

alizability of these abstract effective games. In Chapter 6, I focus on the multiple-realizability of

the replicator equation – the central dynamic in EGT. In Chapter 8, I look at how the same ef-

fective games can be multiply realizable. The aspect of population structure that I focus on there

is the heavily studied influence of spatial structure on dynamics. Effective games can ‘absorb’

both the reductive game and the population’s spatial structure into a single measurement. Or in

other words: the same effective game can be realized by many combinations of different reductive

games and spatial structures. In this way, an effective game is an empirical abstraction that can

be measured directly via the game assay.

This means that abstraction can be both theoretical and empirical and my thesis develops both

methodologies.

1.6 The structure of fitness: from scalars to functions

I expect the methodological theme to be the most impactful contribution of this thesis. But my

contribution is united by more than just method: the other unifying theme of this work is the

structure of fitness.

1.6.1 Fitness scalars and open-ended evolution

In the first part of the thesis, I take the fitness w(x) of genotype x as a given abstract scalar. The

fitness landscape can then be looked at as specifying some notion of ∂wx/∂x over an appropriately

defined space of mutations. In this way, time is not dealt with explicitly, but the focus is instead on
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the number of fixations or introductions of new mutations. This is adequate, since we are looking

to put a big lower bound on the time required to find local peaks and the time is lower bounded

by the number of mutations. The goal is to show that for some landscapes this lower bound is so

large – exponential in the size of the genome – that it cannot be realized even over evolutionary

time-scales.

With this line of reasoning, I am looking to extend the understanding of open-ended evolution

started by Darwin and Wallace. If we revisit Section 1.2, we can see that the primary innovation

of Darwin and Wallace was not to show that organisms could change through selection – this was

already evident from Bakewell’s sheep. Rather it was to deal with the other empirical observation

from Bakewell’s sheep: when selection was relaxed the sheep appeared to ‘return’ to a common

type. The naturalists at the time – like Karl Friedrich von Gaertner working on hybridization in

plants [53] – called this the ‘law of reversion’. In today’s terminology, the 19th century wisdom was

that species were at local peaks, and although human intervention could perturb them as a new

variety away from that peak, once that intervention stopped the organisms would quickly return

to the species peak. In other words, it was already clear to Darwin and Wallace’s audience that

new varieties could emerge. What was not clear was that these varieties could form new species

(and the mechanism behind them). What was not clear was that it was possible for temporary

perturbations to accumulate into permanent divergences and drastically different kinds – that

evolution could continue indefinitely. In other words, what was not clear to the Victorians was

open-ended evolution. And this is not always clear today, especially in the literature on static

fitness landscapes where evolution is assumed to quickly find (and thus equilibrate at) local peaks.

Darwin and Wallace approached the challenge of open-ended evolution as geologists. They knew

that the Earth was changing slowly but drastically. These changes could create new environments

with each acting as a new ‘Bakewell’ and selecting for different traits. In modern terminology,

this could be seen as a dynamic fitness landscape where the local fitness peak moves away due to

environmental change and thus continues to give the populations opportunities to innovate and

change. A second standard approach – used, for example, by Darwin in the special case of sexual

selection – is to realize that a type’s fitness depends on other types. Ecological feedback loops can

form between types – such as evolutionary arms races – that force both to innovate.

In the first part of the thesis – especially Chapter 2 – I propose the constraint of computational

complexity as a third driver of open-ended evolution. There I show that even in finite static land-

scapes, it can be effectively impossible to find local fitness peaks. This means that the population

can continue to climb in fitness, and thus produce open-ended evolution, even without environmen-

tal change or ecological feedback. I link this to the inference of unbounded fitness gain in the E.
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coli long-term evolution experiment [231, 127]; to the existence of beneficial point-mutations even

in well-established ancient genes in yeast [129]; and to equilibrium related puzzles like Baldwin

effect, Hankshaw effect, and larger debates in adaptationalism.

1.6.2 Fitness functions and the ecology of cancer

In the second part of the thesis, I start to question whether taking the fitness w as a scalar is

sufficiently general. Especially in the context of cancer, the fitness of a given type of cells can

depend very heavily on the distribution of other cell types in the environment. Thus, I consider a

generalization of fitness from scalar to function. The collection of these “fitnesses as functions” for

different types is summarized as an evolutionary game. In other words – as I discuss at the start

of Chapter 6 – evolutionary games are a generalization of fitness landscapes. But with this more

expressive model comes a price: it is hard to study a very large number of types.

As such, in the EGT setting, we usually zoom in on a few pre-existing types competing with

each other. This can be thought of as a kind of ecological dynamics (although in the EGT literature

itself, the word ’ecological’ is usually reserved for fitness functions that are explicitly density- rather

than just frequency-dependent). This zoomed-in view moves me away from looking at ∂w/∂x to

instead focusing explicitly on the time dynamics of each type and its fitness – something closer to

dw/dt.

This zoomed in view also forces me to examine more closely how fitness is defined. In Chapter 6,

I build on the distinction between token vs type fitness to get two different kinds of evolutionary

games: reductive vs effective. Most existing studies can be seen as focused on reductive games, so I

instead focus Chapter 7 on effective games and how to measure them in cancer – my focus includes

actually carrying out the new experiments required to measure the games played by non-small

cell lung cancer. Finally, in Chapter 8, I describe how effective games can be multiple-realized by

different kinds of reductive games and spatial structure. In terms of fitness, this means focusing

on how type fitness is not a straightforward average over token fitness.

Thus the thesis as a whole abstracts, expands and elaborates our view of fitness without losing

sight of particular experiments.

1.7 Contribution

I have already published most of the work in this text in blog posts, preprints and traditional

journals. In this section, I want to state some of my main contributions, mention some of the key

prior works that motivates those contributions, and provide a mapping between the chapters and
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my publications.

Chapter 1 borrows text from a series of blogposts that I wrote on my scientific blog Theory,

Evolutionary, and Games Group, mostly inspired by various talks that I have given on my

research.

Sections 1.1 & 1.3 are based on Kaznatcheev [98].

Section 1.2 is based on Kaznatcheev [94].

Section 1.4 is based on Kaznatcheev [104].

Sections 1.5-1.7 are not explicitly based on prior writing, but I developed the distinction

between idealization and abstraction over a number of posts [92, 99, 105].

Chapter 2 is based on the main text of Kaznatcheev [96]. Here I develop the theory of hard fitness

landscapes: the idea of computational complexity as an ultimate constraint on evolution and

the distinction between easy vs hard landscapes. The goal of this chapter is to provide

a biological motivation for why we should care about local peaks not being reachable in

polynomial time.

I provide connections to existing biological data and sketch the surprising conclusions of the

theory of hard fitness landscapes. Specifically, I consider hard fitness landscapes as a new

approach to explaining open-ended evolution. For concrete experimental motivations, I con-

sider (1) recent local fitness landscape measurements that found well established genes in

certain wildtypes to be either at [183] or away from [129] fitness peaks in yeast and (2) the

unbounded growth in the fitness of E.coli in the the long-term evolution experiments [231,

127]. On the theory side, I focus on how hard landscapes can resolve puzzles of adapta-

tionalism [168] like the (3) maintenance of costly learning (Baldwin effect [13, 202]) and (4)

maintenance of cooperation by hitchhiking (Hankshaw effects [70]). This chapter makes ex-

tensive forward references to results proved in the subsequent three chapters, but I save the

formal definitions and proofs for those subsequent chapters.

Chapter 3 expands on parts of the appendix from Kaznatcheev [96] and the first half of Kaz-

natcheev, Cohen, and Jeavons [113]. The primary goal of this chapter is to provide the

formal mathematical definitions and some of the techniques necessary for the proofs in the

subsequent two chapters.

First, I transform the notions of magnitude, sign, and reciprocal sign epistasis developed by

Weinreich, Watson, and Chan [228] and Poelwijk et al. [178], into a definition of three families
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of landscapes (i.e., classes of problem instances): smooth [39], semismooth, and rugged.

The first and last of these are familiar to biologists, but semismooth landscapes are a new

development with important consequences that I explore in Chapter 4. The popular biological

representation for rugged landscapes is the (classic) NK-model [90, 91, 89]. In Section 3.3,

I argue that this model is built on the antiquated one-gene-one-function view of biology, so

I advocate for the generalized NK-model – which I call gene-interaction networks – as an

alternative. These gene-interaction networks are equivalent to valued constraint satisfaction

problem (VCSP) instances, which allows me to connect to a rich existing literature in AI.

In preparation for Chapter 5, I focus on binary Boolean VCSP instances (or, in biological

terminology, biallelic gene-interaction networks without higher-order epistasis) since these

are sufficiently expressive to capture the difference between easy vs hard fitness landscapes.

I develop two kinds of equivalence classes among these instances: magnitude and sign equiv-

alence. The first considers two gene-interaction networks as equivalent if they implement the

same fitness function and the second considers two gene-interaction networks as equivalent

if they implement the same fitness graph [39]. I show that both have a minimal normal form

which allows us to unambiguously (i.e., independent of a particular representation) answer

which genes interact epistatically in a given fitness landscape. Unfortunately, only the for-

mer normal form can be found efficiently: I show that it is NP-hard to find the minimal

sign-equivalent gene-interaction network. This means that even if we have a gene-interaction

network representation of a fitness landscape, we cannot always efficiently determine certain

structural features like the existence of reciprocal sign epistasis. Finally, I also present an

algorithm for learning fitness landscapes in Section 3.7.1 – a publication on this algorithm is

currently in preparation, to be published in the future.

Chapter 4 is mostly based on the appendix from Kaznatcheev [96] (which itself builds on my

old preprint [95]) and a part of Cohen, Cooper, Kaznatcheev, and Wallace [32]. My main

contributions here are the proofs of the theorems that the theory of hard fitness landscapes

relies on. This requires me to introduce new techniques from theoretical computer science into

evolutionary biology. In particular, I unify and extend ideas developed separately by previous

work in evolutionary computation, the analysis of simplex algorithms, and the computational

complexity of polynomial local search.

Polynomial local search: That finding global optima in the classic NK-model of fitness

landscape is hard was previously shown for K ≥ 3 [227] and then K ≥ 2 [233]. In

Section 4.6, I use the hardness of polynomial local search [86] to prove the stronger result
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that finding any local optimum in the classic NK-model for K ≥ 1 (or generalized NK-

model forK ≥ 1) is hard. I also connect Orlin, Punnen, and Schulz [164]’s approximately

locally optimal solutions to the biologist’s selection coefficient to argue that, on hard

fitness landscapes, fitness can converge to a local optimum as a power-law but not as

the exponential convergence typical of equilibration in physical systems. These general

results apply to any evolutionary dynamic – even ones that do not follow adaptive paths,

jump around, or even build and act on internal models of the fitness landscape – but

require the fitness landscape to contain reciprocal sign epistasis (and thus be rugged).

Simplex algorithms: To show how simple – at least with respect to epistasis – hard fitness

landscapes can be, I also show that semismooth fitness landscapes that lack reciprocal

sign epistasis can be hard for particular evolutionary dynamics. In Section 4.3, I prove

that semismooth fitness landscapes are equivalent to acyclic unique sink orientations

of the Boolean hypercube that are studied in the analysis of simplex algorithms [208,

144]. By connecting semismooth fitness landscapes to AUSOs, I can adapt existing

hardness results from the analysis of simplex algorithms to show hardness of particular

semismooth fitness landscapes for particular evolutionary dynamics. Specifically, this

allows me to restate Matousek and Szabo [144]’s results about the RANDOM EDGE

simplex pivot rule in biological terminology: there exist semismooth fitness landscapes

that are hard for random fitter-mutant strong-selection weak mutation (SSWM) dy-

namics. Thus, I show that although a short adaptive path exists from every genotype

to the unique peak of a semismooth fitness landscape, evolution cannot in general find

this path, but will end up on some long winding path instead.

Evolutionary computation: For the particular algorithm of fittest-mutant SSWM, the

recursive root2path landscape construction was introduced by Horn, Goldberg, and Deb

[79] as an example of a fitness landscape where fittest-mutant SSWM dynamics takes

exponentially long to reach a fitness peak. Although this fitness landscape has a sin-

gle peak, it is still rugged because it requires reciprocal sign epistasis to block potential

short adaptive paths to the peak. I show that reciprocal sign-epistasis is not required for

this kind of result by providing a recursive construction for a hard winding semismooth

fitness landscape in Section 4.4. Although this semismooth fitness landscape does not

require reciprocal sign epistasis, I prove, in Section 4.5, that both it and the root2path

landscape would require dense gene-interaction networks if they were implemented di-

rectly instead of recursively. Cohen, Cooper, Kaznatcheev, and Wallace [32] prove that

it is possible to build a fitness landscape that has a sparse gene-interaction network
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of bounded treewidth and is hard for fittest-mutant SSWM but I do not include this

construction here.

Chapter 5 is based on and extends the second half of Kaznatcheev, Cohen, and Jeavons [113],

Section 5.4 is not yet published. The main contribution here is to develop a better view of the

boundary between gene-interaction networks that produce easy vs hard fitness landscapes.

Whereas Chapter 4 aimed to classify how restrictive the model of fitness landscapes can be

while still being able representing hard landscapes, this chapter aims for the other direction:

what is the most expressive model that can only represent easy landscapes? In this way, the

goal is to expand the class of provably easy fitness landscapes beyond smooth ones.

In this chapter, I use a structural measure of easiness: the nonexistence of any long adaptive

paths to a local fitness peak. This was previously used in the optimization literature to

classify easy instances of local MAX-CUT using span arguments, showing that MAX-CUT

on graphs of degree less than 3 is easy [180, 153]. Since MAX-CUT instances can be seen

as special kinds of VCSP instances, I generalize this span approach to all VCSPs by asking

for the minimal number of distinct fitness levels in any VCSP that is sign-equivalent to the

desired fitness graph. I show that all VCSP instances with a constraint network of degree

less than 2 are easy. However, I also show that this span argument cannot extend to general

degree ≥ 3 networks or even to trees of degree ≥ 4.

To overcome the limit on the span argument, I introduce a new proof technique based on

encouragement paths in Section 5.2. I use the encouragement path technique to prove that

any tree-structured binary Boolean VCSP has adaptive paths of at most quadratic length. I

argue that this result is tight by providing examples of fitness landscapes with long adaptive

paths that are represented by trees on domains of size 3, or Boolean with constraint graphs of

tree-width 2. Together, all these results allow me to build a preliminary map of the boundary

of hard vs easy fitness landscapes in Section 5.4 that acts as a summary of Part I.

Chapter 6 is based mostly the first half of Kaznatcheev [111], although I first presented the view

of games as an abstraction of fitness landscapes with Peter Jeavons in the 2019 Mathematical

Oncology Roadmap [188]. The primary goal of this chapter is to provide a brief overview of

evolutionary game theory, especially as it has been used for the study of microscopic systems

like cancer, and to develop my distinction between reductive vs effective games.

By starting with Abrams [1]’s distinction between token vs type fitness, I develop two dif-

ferent ways that economic game theory can be interpreted in evolutionary terms. If we take

payoffs to be a token fitness then we arrive at reductive games and if we take payoffs to be
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a type fitness then we arrive at effective games. The latter of these is a new interpretation

of evolutionary games that I argue is easier to link to experiments in microscopic systems.

This chapter also showcases the multiple realizability of the central algorithm of EGT: repli-

cator dynamics. I do this by collection in one place many known but conceptually different

implementations of the replicator equation.

Chapter 7 is based on an interweaving of the main text and appendix of Kaznatcheev et al.

[119]. The main contribution here is my development of the game assay and our first ever

application of it to measure the ecology of non-small cell lung cancer.

Although there has been much interest and effort in making the evolutionary game theory

of microscopic systems more data driven [220, 121, 219, 138, 66, 131, 8], most of this prior

work follows a two-track approach. In the two-track approach, theory and experiment are

done side-by-side and success is judged from (an often informal) hypothesis-testing or model-

selection perspective by looking at agreement between the macroscopic output of a reductive

theory and the experiment. In this chapter, I combine these two parallel tracks into a single

track by experimentally operationalizing the effective games of Chapter 6 as an assayable

hidden variable of a population and its environment.

Implementing the game assay in practice requires me to design and – together with my

colleagues – carry out new kinds of experiments that I report in this chapter. Although

not currently common in cancer biology, competitive fitness assays are a gold standard for

studying bacteria. In a competitive fitness assay, two cell types are seeded in a petri dish at

a known ratio (usually 1:1) and then the fitness of one or both types is measured. Typically,

such a competitive fitness assay is conducted with a single initial ratio of two competing cell

types. I define the experimental part of the game assay as the extension of the competitive

fitness assay to a series of different initial seeding ratios. For the analysis part of the game

assay, I show how to transform the outputs of these fitness measurements into a game point

in a two-dimensional game space.

Heterogeneity in strategies for survival and proliferation among the cells that constitute a

tumour is a driving force behind the evolution of resistance to cancer therapy [151, 74]. By

carrying out the game assay in an experimental in vitro non-small cell lung cancer system, I

am able to discover new things about the evolution of drug resistance in cancer. My colleagues

and I measured this system to be playing either the Leader or Deadlock game based on

the presence or absence of environmental factors like fibroblasts and the drug Alectinib. The

shift between these two qualitatively different game types confirms the previously theoretical
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postulate of EGT in oncology: it is possible to treat not just the player but also the game. The

Deadlock game in the absence of fibroblasts and drug challenges the common theoretical

assumption of the cost-of-resistance.

Chapter 8 combines ideas from the second half of Kaznatcheev [111] with Kaznatcheev [100] and

includes figures from Kaznatcheev, Scott, and Basanta [115] and my contribution to the 2019

Mathematical Oncology Roadmap [188]. My main contribution here is to show the multiple

realizability of effective games by changes in spatial structure.

Although it is well known that spatial structure can transform evolutionary game dynam-

ics [159, 122, 73, 132, 163, 207, 196, 137], this transformation is not usually presented as a

shift from a reductive to an effective game. The Ohtsuki-Nowak transform [162] is a notable

exception to this – although it does not use the terminology of reductive vs effective games, it

does present spatial structure as a game transformation. In this chapter, I use this transform

to argue for inverting the direction of inference for EGT in microscopic system: instead of

starting with an intuitive reductive game and adding spatial structure to get a surprising

effective game, I suggest that we start with a measured effective game and ‘subtract’ spatial

structure to get a surprising reductive game. I also show concrete examples of the multiple

realizability of effective games by different combinations of space and reductive game (for

example, the reductive Hawk-Dove game on 3-regular random graphs can produce the ef-

fective Leader game that we measured in Chapter 7) and warn against over-interpreting

measured effective games because space can both create and hide frequency-dependent inter-

actions.

Chapter 9 is the conclusion. Here I revisit the Darwinian engine from Figure 1.3 as a unifying

theme of the thesis and catalog some of the questions for future work that the prior chapters

opened. The chapter shares its structure with the thesis by following three famous quotes:

“Nothing in biology makes sense, except in the light of evolution” [45]; “Nothing in evolution

makes sense, except in the light of ecology” [69]; and “nothing in evolution or ecology makes

sense, except in light of the other” [173]. The goal of this chapter and the thesis as a whole

is to see new aspects of biology by the lights of evolution and ecology focused through the

algorithmic lens.
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Part I

Theoretical Abstraction:

Evolution on Fitness Landscapes

Nothing in biology makes sense except in the light of evolution

Dobzhansky [45]

27





Chapter 2

Computational complexity as an

ultimate constraint on evolution

Experiments show that evolutionary fitness landscapes can have a rich combinatorial structure due

to inter-locus interaction known as epistasis [178, 30, 135, 166, 183, 129, 125, 209, 14, 46]. In this

first part of the thesis, I will show that for some landscapes, this structure can produce a com-

putational constraint that prevents evolution from finding local fitness optima – thus overturning

the traditional assumption that local fitness peaks can always be reached quickly if no other evo-

lutionary forces challenge natural selection. To do this, I introduce a distinction between the easy

landscapes of traditional theory, where local fitness peaks can be found in a moderate number of

steps (polynomial in the number of loci) and hard landscapes where finding local optima requires

an infeasible amount of time.

In this chapter, I introduce this theory of hard landscapes, give an overview of its results,

and discuss their importance for evolutionary biology. This is meant as an extended abstract

and biological motivation for the proofs and detailed discussion of the results that I save for the

subsequent three chapters of Part I:

Chapter 3 will formalize the notion of fitness landscapes and their representations;

Chapter 4 will formalize the theory of hard landscapes; and

Chapter 5 will refine the border between easy vs. hard landscapes.

This Chapter is intended to motivate the biological relevance of hard landscapes and uses

common biological terminology that might be unfamiliar to some readers. If you prefer to see

formal definitions and proofs before the biological consequences then I would recommend reading

29
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Chapters 3, 4 and 5 before coming back to this chapter.

Throughout Part I, we will see that hard examples exist even among landscapes with no re-

ciprocal sign epistasis (Definition 3.6); on these “semismooth” fitness landscapes, strong selection

weak mutation dynamics cannot find the unique peak in polynomial time. More generally, on hard

rugged fitness landscapes no evolutionary dynamics – even ones that do not follow adaptive paths

– can find a local fitness optimum quickly. Moreover, on hard landscapes, the fitness advantage of

nearby mutants cannot drop off exponentially fast but has to follow a power-law that long term

evolution experiments have associated with unbounded growth in fitness. Thus, the constraint of

computational complexity enables open-ended evolution on finite landscapes.

Knowing this constraint allows us to use the tools of theoretical computer science and combina-

torial optimization to characterize the fitness landscapes that we see in nature. I present biological

candidates for hard landscapes at scales from single genes, to microbes, to complex organisms with

costly learning (Baldwin effect [13, 202]) or maintained cooperation (Hankshaw effect [70]).

After motivating evolutionary constraints as the mechanisms and phenomena that can keep a

population from reaching a fitness peak, and after introducing the distinction between proximate

vs ultimate constraints in Section 2.1, this chapter is structured by increasing abstraction. In

Section 2.2, I will discuss concrete families of fitness landscapes in which specific evolutionary

dynamics (i.e., algorithms) like random fitter-mutant and fittest-mutant strong-selection weak-

mutation dynamics cannot find a unique local (and thus also global) fitness peak after a polynomial

number of beneficial allele fixations. In Section 2.3, I will abstract to a broader class of evolutionary

dynamics to see that there exist fitness landscapes in which all adaptive dynamics – that is,

dynamics that follow adaptive paths (formally, Definition 3.1) and move populations strictly ‘uphill’

without any assumptions on which fitter mutant is fixed – require a super-polynomial number of

beneficial allele fixations to find a local peak, or to even get close to an approximate peak. Finally,

in Section 2.4, I will abstract to the level of any evolutionary dynamics – with no assumptions

about following adaptive paths nor about respecting genetic distance – and still see the existence

of hard fitness landscapes where local fitness peaks cannot be found in polynomial time.

There is a price that I will have to pay for more abstract and powerful results. I will make

this payment in concreteness. Section 2.2 is based on specific constructions for hard landscapes.

By Section 2.3, instead of providing concrete constructions for hard landscapes, we will see a

sequence of transformations (reductions) that can be applied to existing constructions of circuits

to, in principle, create concrete examples. Finally, in Section 2.4, I will have to rely completely

on reductions and conjectured complexity class separations like FP 6= PLS (see Section 4.6 for an

explanation). Throughout this chapter, I will focus on providing an overview and suggesting some
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high-level consequences for biology of these hardness results. I will save the formal definitions for

Chapter 3, proofs of hardness for Chapter 4, and proofs of tractability for Chapter 5.

For this price, abstraction will yield rewards. By expanding from strict fitness peaks to ap-

proximate peaks in Section 2.3, I will be able to better incorporate the numeric (rather than

just combinatorial) structure of fitness landscapes and link to existing empirical observation of

fitness traces in the Escherichia coli long-term evolution experiment [231]. This will allow the

theory of hard landscapes to provide a new kind of explanation for the slow equilibration mode

and open-ended evolution observed in these experiments. By abstracting to the level of arbitrary

evolutionary dynamics in Section 2.4, I will be able to deal with the dynamics of specific complex

population structures without the need for simplifying assumptions. This can be especially useful

in populations that interweave Darwinian evolution and individual costly learning – such as in

the Baldwin effect. Or in populations that interweave evolutionary and ecologically dynamics in

spatially structured populations – such as the deme-structured populations (or, in spatial terms: a

population distributed over islands with limited migration) of cooperators in the Hankshaw effect.

In particular, I will be able to provide a new kind of explanation for how costly learning and coop-

eration can be maintained in these cases without needing to appeal to just-in-time environmental

change. Finally, in Section 2.5, I will note some new general consequences that my theory of hard

landscapes offers to adaptationism. And I will discuss how this offers different metaphors and

raises new questions and lines of inquiry for biology, regardless of whether hard landscapes occur

in nature or not. Just how ubiquitous hard landscapes (and the corresponding ultimate constraint

on evolution) are in nature becomes an open empirical question for future work.

2.1 Proximate vs ultimate constraint

We usually imagine fitness landscapes (defined formally in Section 3.1) as hills or mountain ranges,

and continue to assume – as Wright [234] originally did – that on an arbitrary landscape “selection

will easily carry the species to the nearest peak”. Biologists define a constraint on evolution as

anything that keeps a population from reaching a local fitness peak. For those that view evolution

as a sum of forces, with natural selection being only one of them, it is possible for other forces to act

as a constraint when they overpower natural selection and keep the population away from a local

fitness peak. Such cases are often associated with maladaptation [38] and are usually attributed

to mechanisms like mutational meltdown [136], mutation bias [236, 235], recombination [133],

genetic constraints due to lack of variation, or explicit physical or developmental constraints of

a particular physiology [120]. I will refer to such situations, where non-selection forces (and/or
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aspects internal to the population) keep the population from reaching a local fitness peak, as

proximate constraints on evolution.

In contrast, I will define a constraint as an ultimate constraint on evolution if it is due

exclusively to features of the fitness landscape and is present in the absence of other forces, or even

holds regardless of the strength of other forces.

All constraints are either proximate, ultimate, or a mix of the two. I introduce this terminology

of proximate and ultimate constraints by analogy to Mayr’s distinction between proximate and

ultimate causes in biology [148]. Mayr considered as ultimate only those evolutionary causes that

are due exclusively to the historic process of natural selection [11], so I consider as ultimate only

those evolutionary constraints that are due exclusively to the fitness landscape structure of natural

selection.

The distinction that I am making between proximate and ultimate constraints can be made

clearer by reference to a distinction in computer science between algorithms and problems that I

discuss in more detail in Section 3.5. I will consider the population structure, update rules, de-

velopmental processes, mutation operator or bias, etc as together specifying the algorithm that is

evolution. In contrast, the families of fitness landscapes are like problems to be ‘solved’ by evolution

and specific fitness landscapes on which populations evolve are problem-instances. A proximate

constraint is any feature of the evolutionary algorithm that prevents the population from finding

a local fitness optimum in polynomial time. For a classic example, consider a population with an

extreme lack of genetic variation that cannot proceed to an adjacent fitter genotype because the

allele that it differs in is simply not available in the population. In this case, the proximate con-

straint of lack of variation due to the details of this particular population’s evolutionary algorithm

prevents it from reaching a fitness peak. In contrast, an ultimate constraint is any feature of the

problem (i.e. family of fitness landscapes) that prevents the population from finding a local fitness

optimum in polynomial time. It is the goal of this chapter and Chapter 4 to show convincing

examples of such constraints.

One candidate for an ultimate constraint on evolution – hysteresis or path-dependence – is

already widely recognized. A local peak might not be the tallest in the mountain range, so reaching

it can prevent us from walking uphill to the tallest peak. An example of this would be the needle-

in-a-haystack landscape where all genotypes have fitness zero (the haystack) except one special

genotype y (the needle) that has fitness one. In this case, the haystack is one giant plateau with

most points (except those directly adjacent to y) as local optima. Being stuck in this fitness zero

local-‘peak’ plateau prevents us from finding the global peak at y. A less drastic example might

have two different peaks with separate basins of attraction, with the taller peak having a much
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smaller basin of attraction.

This constraint of hysteresis has directed much of the work on fitness landscapes toward (1) how

to avoid sub-optimal peaks, or (2) how a population might move from one peak to another [234,

160]. Usually, these two questions are answered with appeals to the strength of other evolutionary

forces. Although sometimes the second question is sidestepped by postulating that local fitness

peaks are part of the same fitness plateau in a holey adaptive landscape and thus fitness valleys

can be bypassed to move between different local optima in the plateau [56, 55]. But both of these

types of questions implicitly assume that local peaks (or plateaus) are easy to reach and thus the

norm for natural selection (or even the starting point in the case of the needle-in-a-haystack).

When the constraint of hysteresis is active, being at one local optimum prevents the population

from reaching other (higher) local optima. Thus, this candidate for an ultimate constraint is only

partial: it prevents only certain – not all – local fitness optima from being found. In this case,

it prevents evolution from finding the highest local peak: the global optimum. But, we seldom

consider that even reaching any local optimum might be impossible in a reasonable amount of

time.

In this chapter, I show that computational complexity is an ultimate constraint on evolution:

it can prevent evolution from finding any local fitness peak (or local fitness plateau) – even low

fitness ones. In other words, a careful analysis will show that the combinatorial structure of

fitness landscapes can prevent populations from reaching any local fitness peaks. This suggests

an alternative metaphor for fitness landscapes: fitness landscapes as mazes with the local fitness

optima as exits. Natural selection cannot see far in the maze and must rely only on local information

from the limited genetic variation of nearby mutants. I will show that, in hard mazes, we can end

up following exponentially long winding paths to the exit because we cannot spot the shortcuts. In

such cases, even if natural selection is the only force acting on the population, a fitness optimum

cannot be found within even evolutionary timescales. Worse yet, the hardest mazes might not have

any shortcuts and even the most clever and farsighted navigator will not know how to reach an exit

in a feasible amount of time. In other words, even if the other evolutionary forces ‘conspire to help’

natural selection, in these cases a local fitness optimum cannot be found within even evolutionary

timescales.

To establish these results, I will introduce into biology new techniques from theoretical computer

science for analyzing the complexity of fitness landscapes. I embrace the randomness within the

algorithm – i.e., the randomness of evolution. But instead of introducing a convenient-to-analyze

distribution of possible fitness landscapes, I focus on worst-case analysis (for more justification,

see Section 3.6). In this way, this part of the thesis can be seen as a contribution to the small
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but growing literature on population genetics and evolutionary biology through the algorithmic

lens [133, 221, 229, 87, 95, 29, 134, 75, 124].

By focusing on worst-case analysis, I am constructing – sometimes implicitly – families of fitness

landscapes that are consistent with the logical structure of our hypothesis class of conceivable

fitness landscapes. I then show that in these hard fitness landscapes, computational complexity

is an ultimate constraint. But this should not be interpreted as a claim that hard landscapes are

ubiquitous or that computational complexity is a major or prevalent constraint. That would be

an empirical question that depends on which fitness landscapes occur in nature. In this chapter, I

suggest several candidates that I suspect correspond to hard landscapes, but the general empirical

question of ubiquity is beyond the scope of this thesis.

2.2 Smooth vs semismooth and easy vs hard families of

landscapes

What makes some fitness landscapes difficult to navigate is that the effects of mutations at different

loci interact with each other. As I will discuss formally in Section 3.2, epistasis is a measure of the

kind and amount of inter-locus interactions. A landscape without sign epistasis (Definition 3.5)

– like the Escherichia coli β-lactamase fitness landscape measured by Chou et al. [30] – is called

smooth (Sections 3.2.1 and 4.2; [228, 39]), and I will call a fitness landscape semismooth if it has

no reciprocal sign epistasis (Definition 3.6; Sections 3.2.1 and 4.3). The fitness graphs ([39] and

Section 3.1) of semismooth fitness landscapes are equivalent to acyclic unique sink orientations

previously defined in a different context by Szabó and Welzl [208] for the analysis of simplex

algorithms (Definition 4.7 and Proposition 4.8). Since reciprocal sign epistasis is a necessary

condition for multiple peaks (Corollary 4.6 and Poelwijk et al. [179]), both smooth and semi-

smooth fitness landscapes have a single peak x∗. Further, there are short adaptive paths in both:

from any genotype x there always exists some adaptive path to x∗ of length equal to the number

of loci on which x and x∗ differ (Theorem 4.9). This means that an omniscient navigator that

always picks the ‘right’ adaptive point-mutation can be guaranteed to find a short adaptive path

to the peak. But unlike smooth landscapes, in a semi-smooth landscape not every shortest path

is adaptive and not every adaptive path is short. And since evolution does not have the foresight

of an omniscient navigator, it is important to check which adaptive paths myopic evolutionary

dynamics are able to find and follow.

Mutation is said to be weak when mutations arise so infrequently that we can assume that

a population is always monomorphic except for a brief moment of transition as a new mutant



2.2. SMOOTH VS SEMISMOOTH AND EASY VS HARD FAMILIES OF LANDSCAPES 35

fixes. Thus, we can represent the population as a single point on the fitness landscape with an

evolutionary step corresponding to a selective sweep that moves the population to a neighbouring

genotype. Selection is said to be strong when the only mutations that fix are those that increase

fitness, in which case we can further assume that the evolutionary step takes us to a neighbouring

genotype of higher fitness. The rule for selecting which neighbour ends up fixing depends on the

details of our mutation operator and model of evolution (i.e. this rule specifies the algorithm). The

set of algorithms corresponding to all such rules is known as strong-selection weak mutation

(SSWM) dynamics (in biology) or as local search algorithms (in computer science).

A number of rules (or algorithms) for the SSWM dynamics have been suggested for which

fitter neighbour will take over the population [166] – such rules correspond to different models

of evolution. The two most common rules are to select a fitter mutant uniformly at random, or

to select the fittest mutant. These rules capture the intuition of evolution proceeding solely by

natural selection with other forces absent or negligible.

All SSWM rules will quickly find the (unique global) fitness optimum in a smooth fitness

landscape. But there exist semismooth fitness landscapes such that, when starting from a random

initial genotype, an exponential number of evolutionary steps will be required for either the random

fitter-mutant ([144]; Theorem 4.10) or fittest-mutant (Theorems 4.16 and 4.20) dynamics to find

the unique fitness optimum. For a small example on six loci, see Figure 2.1: the black arrows

trace the evolutionary path that a population would follow under fittest mutant SSWM dynamics.

Although two-step adaptive paths exist to the fitness peak (e.g., 000000 → 000001 → 000011),

the myopic navigator cannot notice these shortcuts and ends up on a long winding path. In

other words, even when there is a single peak and adaptive paths of minimal length to it, SSWM

dynamics can take exponential time to find that peak.

These results show that the computational complexity due to the combinatorial structure of

the fitness landscape can be enough to stop evolution from reaching a fitness optimum within a

reasonable timescale, even in the absence of suboptimal local peaks. Computer scientists have

found it helpful to distinguish between processes that require a time that grows polynomially with

the size of the input – generally called tractable – and those that require a time that increases

faster than any polynomial (super-polynomial) – which are called intractable. If the winding fitness

landscapes of Figure 2.1 is generalized to 2n loci instead of just 6 (Section 4.4) then following fittest

mutant SSWM dynamics to the peak is an intractable process since it scales exponentially, requiring

2n+1 − 2 mutational steps. Although evolutionary time is long, it is not reasonable to think of it

as exponentially long. For example, the above winding process with a genotype on just 120 loci

and with new set of point-mutants and selective sweep at a rate of one every second would require
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more seconds than the time since the Big Bang.

To capture this infeasibility of super-polynomial scaling in time, I introduce a distinction be-

tween easy and hard families of fitness landscapes. If we can guarantee for any landscape in the

family that a local fitness peak can be found by natural selection in a time that scales as a poly-

nomial in the number of loci – as is the case for smooth fitness landscapes – then I will call that

an easy family of landscapes. I will call a family of landscapes a hard family of landscapes

if we can show that the family contains landscapes where finding a local fitness optimum requires

a super-polynomial amount of time – as I described above for one particular family of semismooth

fitness landscapes. Given that even for moderately sized genomes such large times are not real-

izable even on cosmological timescales, I will use “impossible” as a shorthand for “requiring an

infeasible amount of time”.

Given their exponential size, it is impossible to completely measure whole fitness landscapes

on more than a few nucleotides. But with improvements in high-throughput second-generation

DNA sequencing there is hope to measure local fitness landscapes of a few mutations away from

a wildtype [183, 129]. And in Section 3.7.1, I will discuss how we might use these local fitness

measurements to learn the gene-interaction networks that specify the whole fitness landscape.

As examples of existing local landscape measurements, Puchta et al. [183] estimated the fitness

of 981 single-step mutations of a 333-nucleotide small nucleolar RNA (snoRNA) gene in yeast.

They found no neighbours fitter than the wild type gene. This suggests that this gene is already

at a fitness peak, and hence that the snoRNA gene’s fitness landscape may be easy. In contrast,

Li et al. [129] estimated the fitness of 207 single-step mutants of a 72-nucleotide transfer RNA

(tRNA) gene, also in yeast, finding two neighbours that are significantly fitter than the wildtype

and a number that are fitter but only within experimental noise. Thus, the wildtype tRNA gene

is apparently not at a local fitness peak, which suggests this system as a candidate hard fitness

landscape. Both studies also looked at many 2- and 3-step mutants, and the landscape of the tRNA

gene was measured to have more than 160 cases of significant sign epistasis [129], with none in

the snoRNA landscape [183], mirroring the difference between hard semismooth fitness landscapes

and easy smooth landscapes that I am proposing here.

2.3 Rugged landscapes and approximate peaks

But there exist natural fitness landscapes that are even more complicated than semi-smooth ones.

Rugged fitness landscapes – like the Lozovsky et al. [135] Plasmodium falciparum dihydrofolate

reductase fitness landscape that I will discuss more in Section 3.2 – that contain reciprocal sign
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epistasis and can have multiple peaks. As I discuss in more detail in Chapter 3, such rugged

landscapes can be represented by either the classic NK-model (Section 3.3) or the generalized NK-

model (that I introduce in Section 3.4). Both the classic NK-model for K ≥ 2 and generalized

NK-model for K ≥ 1 can generate hard fitness landscapes where from some initial genotypes,

any adaptive walk to any local peak is exponentially long (Corollary 4.26). On such landscapes,

any adaptive evolutionary dynamic – including, but not limited to, all the SSWM dynamics we’ve

considered so far – generally requires an exponential number of steps to reach a local fitness

optimum. Even if an omniscient navigator could always choose the most clever adaptive single

mutation to arise, the adaptive path would not reach a local fitness optimum within polynomial

timescales.

To better integrate the numeric structure of fitness, let us consider a genotype x to be at an

s-approximate peak [164] if each of x’s mutational neighbours y have fitness w(y) ≤ (1 + s)w(x)

(Definition 4.28). On the hard rugged fitness landscapes described above, fittest mutant dynamics

will encounter an s-approximate peak with moderately small s in a moderate number of mutational

steps (polynomial in n and 1/s; Theorem 4.30).

However, on these same hard fitness landscapes, it is not possible to find an s-approximate

peak for very small s in a feasible amount of time (i.e. not possible in time polynomial in n and

ln 1/s; Theorem 4.32). This (un)reachability of s-approximate fitness peaks is especially important

to consider in discussions of nearly-neutral networks and approximate fitness plateaus [161, 55].

In an idealized, unstructured population, we can expect random drift to overcome selection when

s drops below about 1/P where P is the number of individuals in the population. But certain

structured populations can act as amplifiers of selection [171] and prevent drift from dominating

until s is significantly closer to zero.

Given that the quantity s in the definition of an s-approximate peak is defined in the same

way as the selection coefficient of population genetics [62], the above approximation results allow

us to link the distinction between easy and hard fitness landscapes to the rich empirical literature

on fitness traces and declining fitness gains in microbial evolution experiments [36]. On the hard

rugged fitness landscapes described above – and even on the winding semi-smooth landscape of

Figure 2.1 and Section 4.4 – this selective coefficient drops off at the slow rate of s(t) ≈ 1/t for

fittest mutant dynamics. In general, on any family of landscapes – even the hardest ones – s(t)

can decay as fast as a power law. On easy landscapes, it can decay faster, but the power law decay

in selection coefficient is the fastest decay possible on hard fitness landscapes. In particular, the

selective coefficient, on hard landscapes, cannot decrease at the exponential rate (i.e. s(t) ≈ e−t;

Corollary 4.33) that is typical of equilibration in non-biological systems. This slow decay in selec-
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tion coefficient is consistent with the rule of declining adaptability observed in various microbial

long-term evolution experiments [231, 127, 36], suggesting that at least some naturally occurring

microbial fitness landscapes might be hard. Thus, a natural candidate for hard landscapes might

be the landscapes with unbounded growth in fitness observed in the E. Coli long-term evolutionary

experiment [231]. Whereas when one sees a power-law in allometry, one expects potential physical

constraints [68, 120]; I propose that when one sees a power-law in selection strength or fitness, one

should look for a computational constraint.

The existence of hard landscapes allows us to explain open-ended evolution as a consequence

of the ultimate constraints of computational complexity. I am certainly not the first to note that

populations might undergo unbounded increases in fitness and open-ended evolution. In fact,

there is an extensive literature on the rate of adaptation [59, 60, 61, 167, 165, 231, 36] that seems

to assume (at least implicitly) that a fitter mutation is always available. These models often

directly build-in unbounded growth by treating mutations as independent random samples from

a distribution of fitness effects that can always generate a higher fitness variant, albeit with low

probability. So, although these models are also called fitness landscapes, they are not like the

combinatorially structured fitness landscapes that I discuss in this thesis. To disambiguate, I will

refer to these rate of adaptation models as Orr-Gillespie landscapes or unbounded tree landscapes.

If we want to imagine Orr-Gillespie landscapes in a way similar to the fitness landscapes that I

study in this thesis then we have to create them over an infinite number of types (instead of the 2n

types in a biallelic fitness landscape on n loci) and usually give them an infinite branching factor

(instead of the n for a fitness landscape on n loci) with a new branch for every possible sample from

the mutation distribution. This approach corresponds to implicitly constructing a fitness landscape

as an infinite unbounded tree that lacks the second-order and higher combinatorial structure that

mutation-graphs provide. These unbounded tree models are currently better suited to empirical

operationalization than (the exponentially large but) finite fitness landscapes and they make good

effective theories on shorter timescale (where time – measured in the number of fixations – is

significantly less than the size of the genome). But these models simply assume (often by reference

to recent environmental change) that a beneficial mutation is always possible, rather than explain

why such a mutation is always possible. Thus, unbounded tree landscapes presupposes that local

fitness peaks cannot be reached since no local fitness peaks exist in these models. In this way,

Orr-Gillespie landscapes build-in unbounded growth in fitness.

This is in stark contrast to the work I present in this chapter. To avoid building-in the un-

bounded growth in fitness that I aim to explain, I consider families of finite fitness landscapes. I

show that these can be either easy or hard. In the hard families of landscapes, there is a compu-
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tational constraint on evolution that ensures that beneficial mutations are available for effectively

ever. Thus, this work can be read as an explanatory complement to the unbounded tree land-

scapes. Of course, given that I consider large but finite fitness landscapes, it is conceivable that a

population will be found at a local fitness peak of a hard fitness landscape. This is conceivable in

the same way as – according to the Poincaré recurrence theorem – all the oxygen molecules in a

large room will eventually return arbitrarily close to the corner they were released from. But just

as the Poincaré recurrence theorem does not invalidate the second law of thermodynamics [21],

the existence of local peaks in finite static landscapes does not invalidate the general principles of

open-ended evolution on hard fitness landscapes.

2.4 Arbitrary evolutionary dynamics: learning and cooper-

ation

As we move from single genes [183, 129], to microbes [231, 36], and on to large organisms, a richer

space of possible evolutionary dynamics opens up. To capture this rich space of possibilities, we

need to abstract beyond adaptive dynamics by considering arbitrary mutation operators, demogra-

phies, population structures and selection functions – even ones that can cross fitness valleys and

distribute the population over many genotypes. From the perspective of constraints on evolution,

I want to now consider the effect of relaxing the selective constraint that confines populations to

an adaptive path ([16]; Defintion 3.1). By allowing non-adaptive changes, I want to highlight the

power of the constraint of computational complexity, even in the absence of the selective constraint.

From the perspective of evolutionary forces, we have to allow for other strong forces that can po-

tentially overpower or boost the force of natural selection. To make sure that we have considered

all possibilities, I will model arbitrary evolutionary dynamics as the class of all polynomial-time

algorithms. This takes us into the realm of the computational complexity class of polynomial local

search (PLS; Johnson, Papadimitriou, and Yannakakis [86], Roughgarden [189] and Section 4.6).

But even for these most permissive population-updating procedures, I will show in Chapter 4 that

evolution will in general require an infeasible amount of time to find a local fitness peak in the

classic NK-model with K ≥ 2 or generalized NK-model with K ≥ 1 (Theorem 4.25 and Corol-

lary 4.27), or to find an s-approximate peak for very small s (Theorem 4.32). Evolution will still

be trapped in the mazes of hard fitness landscapes and not reach anywhere near the ‘exit’ of a

local fitness optimum. In other words, no proximate cause can overpower the ultimate constraint

of computational complexity.

If one is accustomed to seeing results only for particular evolutionary algorithms, then the
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generality of the above results might seem fantastical. But these are exactly the kind of general

results that are typical in computational complexity theory. By linking evolutionary biology to the-

oretical computer science, we can abstract over the details that implement particular evolutionary

dynamics.

The strength of this ultimate constraint allows us to reason rigorously from disequilibrium to

establish positive results. For instance, that costly learning (Baldwin effect [13, 202]) can remain

adaptive, or that hitchhiking can maintain cooperation (Hankshaw effect [70]) effectively forever.

In the case of costly learning, Simpson [202] noted: “[c]haracters individually acquired by members

of a group of organisms may eventually, under the influence of selection, be reinforced or replaced

by similar hereditary character”. For Simpson [202] this possibility constituted a paradox: if

learning does not enhance individual fitness at a local peak and would thus be replaced by simpler

non-learning strategies, then why do we observe the costly mechanism and associated errors of

individual learning?

A similar phenomenon is important for the maintenance of cooperation. Hammarlund et al. [70]

consider a metapopulation that is not sufficiently spatially structured to maintain cooperation (see

Chapter 8 for more on the effects of space on evolutionary games). They augment the metapopu-

lation with a number of genes with non-frequency dependent fitness effects that constitute a static

fitness landscape. If adaptive mutations are available, then cooperators are more likely to discover

them due to the higher carrying capacity of cooperative clusters. This allows cooperation to be

maintained by hitchhiking on the genes of the static fitness landscape. Hammarlund et al. [70]

call this hitchhiking the Hankshaw effect and for them it constitutes a transient: since cooperation

does not enhance opportunities for adaptive mutations at the fitness peak, then cooperators will

be out-competed by defectors.

Currently, both the Baldwin and Hankshaw puzzles are resolved in the same way: by invoking

just-in-time environmental change. Most resolutions of the Baldwin paradox focus on non-static

fitness in rapidly fluctuating environments that are compatible with the speed of learning but not

with evolutionary adaptation. Similarly, Hammarlund et al. [70] suggest making their transient

permanent by focusing on dynamically changing environments. But, these just-in-time dynamic

changes in the fitness landscape are not necessary if we acknowledge the existence of hard static

fitness landscapes. Individual costly learning and higher densities of cooperative clusters leading

to more mutational opportunities are two very different evolutionary mechanisms for increased

adaptability. But they are both just polynomial-time algorithms. Regardless of how much these

mechanisms speed-up, slow-down, guide, or hinder natural selection, the population will still not

be able to find a local fitness optimum in hard fitness landscapes. Without arriving at a fitness
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optimum, the paradox of costly learning dissolves and the Hankshaw effect can allow for perpetual

cooperation. This suggests that if we want a family of natural examples of evolution on hard fitness

landscapes among more complex organisms, then good candidates might be populations with costly

learning or persistent cooperation. More generally, the non-vanishing supply of beneficial mutations

on hard landscapes can allow selection to act on various mechanisms for evolvability [16] by letting

the evolvability-modifier alleles hitchhike on the favourable alleles that they produce.

2.5 General consequences for adaptationism

These examples can be seen as instances of a more general observation on adaptationism. It is

standard to frame adaptationism as “the claim that natural selection is the only important cause

of the evolution of most nonmolecular traits and that these traits are locally optimal” [168]. In

this first path of the thesis, I show that these are two independent claims. Even if we assume that

(1) natural selection is the dominant cause of evolution then – on hard fitness landscapes – it does

not follow that (2) traits will be locally optimal. Given the popularity of equilibrium assumptions

in evolutionary biology, I expect that future work could ease a number of other paradoxes and

effects, in addition to the Baldwin effect and Hankshaw effect, by recognizing the independence of

these two claims of adaptationism.

For those biologists who have moved on from debates about adaptationism and instead aim to

explain the relative contribution of various evolutionary forces to natural patterns, I provide a new

consideration: hard landscapes allow the force of natural selection on its own to explain patterns

such as, for example, maladaptation. Prior accounts of maladaption rely on forces like deleterious

mutation pressure, lack of genotypic variation, drift and inbreeding, and gene flow acting opposite

to natural selection, resulting in a net zero force and thus a maladaptive equilibrium away from

a fitness peak [38]. The ultimate constraint of computational complexity allows for perpetual

maladaptive disequilibrium even in the absence of (or working against) these other forces.

Currently, finding a species away from a local fitness peak is taken as motivation for further

questions on what mechanisms or non-selective evolutionary forces cause this discrepancy. In this

context, my results provide a general answer: hard landscapes allow adaptationist accounts for the

absence of evolutionary equilibrium and maladaptation even in experimental models with static

environments – and/or the absence of strong evolutionary forces working against natural selection

– like in the cases of the tRNA gene in yeast [129, 46] or the long-term evolutionary experiment in

E. coli [231]. By treating evolution as an algorithm, we see that time can be a limiting resource

even on long evolutionary timescales. These hard landscapes can be finite and deceptively simple
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– having only limited local epistasis or not having reciprocal sign-epistasis – and yet allow for

effectively unbounded fitness growth.

In contrast, a system found at a local fitness peak – like the snoRNA gene in yeast [183] –

currently merits no further questions. The results in this chapter show that establishing evolu-

tionary equilibrium should not be the end of the story. We need to also explain what features

of the relevant fitness landscapes make them easy: i.e., explain why these fitness landscapes do

not produce a computational constraint on evolution. For this, the tools of theoretical computer

science can be used to refine our logical characterization of such fitness landscapes to guarantee

that local peaks can be found in polynomial time. For example, we could consider limits on the

topology of the gene-interaction network, or the type of interaction possible between genes [28] to

separate easy from hard landscapes. In Chapter 5, I follow the first approach. I show that the

longest adaptive path has at most O(n2) fixations for any family of landscapes where each biallelic

gene interacts with at most two other genes (Theorem 5.6) or where the biallelic gene-interaction

network is tree-structured (Theorem 5.15). Thus, these families of landscapes are provably easy.

Classifying families as easy vs hard opens new avenues for both empirical and theoretical work. I

develop a preliminary mapping of the boundary between easy vs hard landscapes in Section 5.4.

2.6 Summary and conclusion

In this chapter, I discussed the mathematical constructions for hard fitness landscapes (that are

proved formally in Chapter 4) and suggested some empirical candidates. By doing this, I showed

that computational complexity is an ultimate constraint on (our models of) evolution. But I did not

establish that it is a major constraint in nature. Given the empirical candidates that I suggested,

I expect it to play a major role. However, after future empirical investigations, it could be that

we find no naturally occurring hard fitness landscapes. This would not be a disappointment. If

our models of fitness landscapes allow for ultimate constraints but we do not see those ultimate

constraints in nature, then we will know the direction in which to refine our models.

Given the limited – albeit growing [178, 30, 135, 209, 166, 183, 129, 125, 14, 46] – empirical

data available on the distribution of natural fitness landscapes, it is tempting to turn to theoretical

distributions of fitness landscapes. But we should be cautious here. As I will discuss in more detail

in Section 3.6, the popular uniform distributions over gene-interaction networks and interaction

components was introduced for ease of analysis rather than some foundational reason or empirical

justification. With this distribution, I would expect hard instances to be scarce based on arguments

similar to Tovey [215] and Hwang et al. [81]. However, instead of choosing a distribution for ease of
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analysis, we could instead choose one by Occam’s razor: i.e. the Kolmogorov universal distribution

(sampling landscapes with negative log probability proportional to their minimum description

length). In the Occam case, I would expect the fraction of fitness landscapes that are hard to be

significant based on results similar to Li and Vitányi [130] (see Section 4.8 for more discussion).

I leave it as an open question for future work to determine what choices of distribution of fitness

landscapes are most appropriate, and how average case analysis over those particular distributions

compares to the distribution-free analysis that I have presented here and formalize in Chapter 4.

On easy landscapes, it is reasonable to assume that evolution finds locally-well-adapted geno-

types or phenotypes. If we prove that a family of landscapes is easy (as I do for some families

in Chapter 5) then we can continue to reason from fitness peaks (i.e. draw conclusions from the

assumption that populations will easily reach or already are at a fitness peak), debate questions

of crossing fitness valleys, and seek solutions to Wright [234]’s problem of “a mechanism by which

the species may continually find its way from lower to higher [local] peaks”.

But with hard landscapes, it is better to think of evolution as open-ended and unbounded. We

will have to switch to a language of “adapting” rather than “adapted”. We will have to stop rea-

soning from equilibrium – as I did in the discussion of maintaining costly learning and cooperation.

Finally, we will have to stop asking about the basins of attraction for local peaks and instead seek

mechanisms that select which unbounded adaptive path evolution will follow. It is tempting to

read this language of disequilibrium and negation of “locally adapted” as saying that organismal

traits are not well honed to their environment. But we must resist this mistake and we must not

let better be the enemy of good. Finding local optima in the hardest landscapes is a hard problem

for any algorithm, not just biological evolution. In particular, it is also hard for scientists: on hard

landscapes we cannot find optimal solutions either, and so the adapting answers of evolution can

still seem marvelously well-honed to us. Although I have focused on biological evolution, we can

also look for hard landscapes in other fields. For example, these results translate directly to areas

like business operation and innovation theory, where the NK-model is used explicitly [128, 186].

In physics, the correspondence between spin-glasses and the NK-model can let us look at energy

minimization landscapes. In economics, classes of hard fixed-point problems similar to PLS are

used as a lens on markets [189, 64]. In all these cases, theoretical computer science and combi-

natorial optimization offer us the tools to make rigorous the distinction between easy and hard

landscapes. They allow us to imagine hard landscapes not as low-dimensional mountain ranges

but as high-dimensional mazes that we will search for-effectively-ever.



Chapter 3

Representing fitness landscapes as

gene-interaction networks

Genotype and fitness are two central concepts in evolutionary biology. Through its production of

a phenotype and that phenotype’s interactions with the biotic and abiotic environment, a given

genotype has a certain fitness. A fitness landscape idealizes this relationship between genotypes

(or phenotypes) and fitness.

In Section 3.1, I provide a formal definition of fitness landscapes and the idea of fitness graphs

(Definition 3.2) to capture the combinatorial structure of the landscape. In Section 3.2, I dis-

cuss the idea of magnitude (Definition 3.4), sign (Definition 3.5), and reciprocal sign epistasis

(Definition 3.6) and their corresponding families of smooth, semismooth, and rugged landscapes,

alongside some empirical examples (Figure 3.3). The distinction between these different classes of

landscapes will be central to the hardness results in Chapter 4. For rugged landscapes, I define

the popular classical NK-model (Definition 3.7) in Section 3.3 and explain how it hard-codes the

one-gene-one-function perspective. Given that the one-gene-one-function perspective is inelegant

and outmoded, I introduce a generalized NK-model in Section 3.4 to remove the one-gene-one-

function assumption. This generalized model is equivalent to instances of the valued constraint

satisfaction problem (Definition 3.8) from artificial intelligence, which allows me to make powerful

links to computer science in Chapter 5. But to make best use of these links, I have to introduce

the computational distinction between problem vs algorithm (Section 3.5) and justify the use of

worst-case analysis instead of assuming convenient-to-analyze distributions over fitness landscapes

(Section 3.6).

An important feature of the generalized NK-model is the gene-interaction network as a compact

45
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representation of the fitness landscape. Unfortunately, without restrictions, this representation is

not unique, so I have to investigate the minimal representations and the unique normal forms

that they give rise to. First, in Section 3.7, I show that any fitness landscape has a minimal

necessary magnitude-equivalent (see Definition 3.13) gene-interaction network that encodes the

structure of magnitude (and higher) epistasis and that can be easily computed. As a bonus, we can

use the correspondence between multilinear polynomials and these minimal magnitude-equivalent

gene-interaction networks to learn fitness landscapes from local measurements (Section 3.7.1).

Second, in Section 3.8, I introduce the idea of considering landscapes to be sign-equivalent (see

Definition 3.18) if they have the same fitness graph. I show that a minimal normal form still exists,

but it is NP-hard to compute (Theorem 3.26).

3.1 Fitness landscapes

In 1932, Wright introduced the metaphor of a fitness landscape [234]. The landscape is a genetic

space where each vertex is a possible genotype and an edge exists between two vertices if a single

mutation transforms the genotype of one vertex into the other. Fitness landscapes combine numeric

fitnesses and a mutation-graph into a combinatorially structured space where each vertex is a

possible genotype (or phenotype). The numeric structure is given by a function that maps each

genotype to a fitness; typically represented as a non-negative real number and having different

physical operationalizations in different experimental systems (as I will discuss in more detail in

Chapter 6). The domain of this function has structure: A given genotype is more similar to

some rather than other genotypes – giving us a notion of genetic distance or mutation-graph. The

mutation-graph specifies which genotypes are similar, typically as edges between any two genotypes

that differ in a single mutation. This provides the combinatorial structure.

The rest of this section explains the above terse definition more explicitly.

A genotype is a local fitness peak (or local fitness optimum) if no adjacent genotype in the

mutation-graph has higher fitness. In Chapters 4 and 5, I will focus on the reachability of these

peaks.

Formally, I will model the genotypes (or points), A, in a fitness landscapes as assignments

to a collection of n genes (variables), indexed by the set of loci [n] = 1, 2, . . . , n, with domains

of alleles D1, . . . , Dn. Hence each point corresponds to a vector x ∈ D1 × · · · × Dn. We will

generally focus on uniform domains (i.e., cases where D = D1 = · · · = Dn), where this simplifies

to x ∈ Dn. In particular, we will often be interested in biallelic systems (i.e. Boolean domains),

where x ∈ {0, 1}n, so each genotype can be seen as a bit-vector.
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To make this set, A, of genotypes into a space, we need a notion of genetic proximity or

similarity. For this, I will define a neighbourhood function on the set of points A to be a

function N : A → 2A. For simplicity, I will assume this function is symmetric in the sense that

if y ∈ N(x), then x ∈ N(y), and I will call such a pair x and y adjacent points. Throughout

the thesis, I will primarily focus on the case where the set of points A is the set of assignments

D1×· · ·×Dn and N is the 1-flip neighbourhood defined as the unit Hamming ball by y ∈ N(x)

if and only if there is a variable position i such that xi 6= yi and this is the only difference (i.e.,

∀j 6= i xj = yj). In the case of the Boolean domain, the graph of the function N , where the

edges are the pairs of adjacent points, is the n-dimensional hypercube.

We can also think of this genetic space in terms of a mutation graph, where – for a biallelic

system – a mutation can flip any loci from one allele to the other, thus two strings x, y ∈ {0, 1}n

are adjacent if they differ in exactly one bit. These two views of the combinatorial structure can

usually be treated as equivalent, but I discuss a subtle and important distinction in Section 3.5.

The last ingredient, fitness, is given by a function that maps each string to a numeric value,

usually a non-negative real or rational number. In this chapter, I will concentrate on functions

that map to natural numbers. This is not a significant limitation, as fitness values can generally

be re-scaled arbitrarily, but it simplifies some aspects of the presentation.

Given a set of genotypes, A, I define a fitness function on A to be an integer-valued function

defined on A, that is, a function f : A→ Z. Because I am modelling fitness, rather than cost, we

want to maximise this objective functions in this thesis. But all results can also be carried over

directly to the minimisation context (that is more popular in physics and machine learning) by

flipping signs.

Populations of individual organisms can be thought of as inhabiting the vertices of the landscape

corresponding to their genotype, with a polymorphic population distributed over many vertices.

And we imagine evolution as generally trying to ‘climb uphill’ on the landscape by moving to

vertices of higher fitness.

Definition 3.1. In a fitness landscape with fitness f , a path x1...xt is called an adaptive path

if for each 1 ≤ i < t, xi+1 ∈ A is a neighbour of xi and f(xi+1) > f(xi).

These are sometimes also called accessible paths, but I will avoid this terminology because for

the most general evolutionary dynamics, the paths taken don’t have to be strictly increasing in

fitness; i.e. they don’t have to necessarily be adaptive. In other words, for arbitrary evolutionary

dynamics, evolution can follow (or access) non-adaptive paths. So non-adaptive paths are accessible

to arbitrary evolutionary dynamics; and it would be awkward to say that non-accessible paths are
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accessible to arbitrary evolutionary dynamics. If some particular evolutionary dynamic produces

only adaptive paths, though, then it is called an adaptive dynamic.

Sometimes it is useful to represent a fitness landscape as a fitness graph [42, 39] by replacing

the fitness function by a flow on genotypes: for adjacent genotypes in the mutation-graph, direct

the edges from the lower to the higher fitness genotype. This results in a characterization of fitness

landscapes of a biallelic system as directed acyclic graphs on {0, 1}n. But generally, and more

formally:

Definition 3.2 ([42, 39]). Given any fitness landscape (A, f,N), the corresponding fitness graph

G has vertex set V (G) = A and directed edge set E(G) = {xy | y ∈ N(x) and f(y) > f(x)}.

Note that the edges of the fitness graph consist of all pairs of adjacent points which have distinct

values of the fitness function, and are directed from the lower value of the fitness function to the

higher value. If there are adjacent edges of equal fitness then it is customary to have no edge

between them (although some people might draw an undirected edge in a different style). When

we interpret the genetic space as the space of possible mutations, then the directed edges of the

fitness graph represent the possible moves that can be made by adaptive dynamics or a local

search algorithm. In such an interpretation (and especially in the context of the AI literature), the

fitness graph could also be a called a transition graph. Finally, in the fitness graph representation

of landscapes, fitness peaks correspond to sinks, and adaptive paths (or the traces of local search

algorithms) correspond to paths that follow the edge directions of the directed graph. I will consider

a population to be at evolutionary equilibrium if it is at a local peak in the fitness landscape (i.e.,

a sink in the fitness graph).

Crona, Greene, and Barlow [39] introduced the fitness graph representation explicitly into

theoretical biology, but fitness graphs have been used implicitly in earlier empirical studies of

fitness landscapes [42, 50, 67, 209]. Using fitness graphs is particularly useful empirically when it

is difficult to quantitatively compare fitnesses across experiments. In this case, pairwise competition

assays can be used to determine the edge direction. However, if pairwise competitions are used to

build an empirical fitness graph, it is important to verify that the graph is transitive (acyclic) [223].

If the fitness graph is non-transitive then we know that fitness cannot be represented as a scalar

– I discuss more general representations of fitness theoretically in Chapter 6 and engage with this

empirically in Chapter 7. In theoretical work where fitness can be treated as a scalar, the fitness

graph approach has made the proofs of some classical theorems relating local structure to global

properties easier and shifts our attention to global algorithmic properties of evolution instead of

specific numeric properties. The amenability of fitness graphs to proof will be most evident in
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(b) Sign epistasis
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(c) Reciprocal sign epistasis

Figure 3.1: Three different kinds of epistasis possible in fitness graphs. Arrows are directed
from lower fitness genotypes towards mutationally-adjacent higher fitness genotypes. Genes a,A
and b, B are labeled such that fitness f(AB) > f(ab). In the centre of each graph is a marker for
the type of epistasis, the marker’s various rotations and reflections cover the cases where AB does
not have the highest fitness. For this more exhaustive classification and discussion see Figure 3.2

Chapters 4 and 5.

Throughout this thesis, I consider individual genotypes (or the corresponding phenotypes) as

the domain of the fitness landscapes. Thus, I am focusing on micro-evolutionary processes. Given

the extremely long time scales that I am considering in this report, it is also natural to consider

generalizations where the vertices in the fitness landscape are interpreted as whole species and

mutations as speciation events. For simplicity, I will not explicitly discuss such macro-evolutionary

processes.

3.2 Epistasis and empirical fitness landscapes

An important structural feature of fitness landscapes is that the effects of mutations at different loci

interact with each other. Epistasis is a measure of the kind and amount of inter-locus interactions.

Here, I will follow Weinreich, Watson, and Chan [228] and Poelwijk et al. [178]’s classification of

epistasis into three kinds: magnitude, sign, and reciprical sign. Consider two loci in some particular

genetic background (i.e., the value of the loci outside the two were are focused on) with the first

having alleles a or A, and the second b or B. For brevity, I will omit writing the particular genetic

background (but I will start writing out the genetic background explicitly again in Section 3.8).

Assume that the upper-case combination is more fit: i.e. f(ab) < f(AB).

Definition 3.3. Two loci are non-interacting if the fitness effects are additive and independent

of background: f(AB)− f(aB) = f(Ab)− f(ab), f(AB)− f(Ab) = f(aB)− f(ab).

In magnitude epistasis this additivity is broken, but the signs remain: f(AB) > f(aB) > f(ab)

and f(AB) > f(Ab) > f(ab). More formally:

Definition 3.4. Two loci have magnitude epistasis if f(AB)− f(aB) 6= f(Ab)− f(ab) and/or
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f(AB)− f(Ab) 6= f(aB)− f(ab) but f(AB) > f(aB) > f(ab) and f(AB) > f(Ab) > f(ab).

Note that the difference between non-interacting loci and magnitude epistasis is not invariant under

strictly monotone transformations of the fitness function, thus fitness graphs will not distinguish

between the two types. Hence, non-interacting loci and pairs with magnitude epistasis induce the

same kind of subgraph in their fitness graph and this subgraph is shown in Figure 3.1a. Throughout

this thesis, I will often use ‘no epistasis’ to cover both non-interacting loci and magnitude epistasis

and I will put the ‘↑’ symbol between two loci to represent that they have no epistasis.

A system has sign epistasis if it violates one of the two conditions for magnitude epistasis. For

example, if the second locus is b then mutation from a to A is not adaptive, but if the second locus

is B then mutation from a to A is adaptive. More formally:

Definition 3.5 ([228]). Given two loci, if f(AB) > f(aB) > f(ab) > f(Ab) then there is sign

epistasis at the first locus.

In other words, if the fitness effect of a mutation a→ A can have a different sign depending on the

genetic background b or B of another locus then these two loci are said to have sign epistasis. This is

called “sign” epistasis because the condition in Definition 3.5 could have equivalently been written

as sgn(f(AB)−f(aB)) 6= sgn(f(Ab)−f(ab)). In terms of induced fitness (sub) graphs, that means

that there is an adaptive path from ab to AB by mutating the second locus (i.e ab→ aB → AB)

but the path through the first locus is inaccessible to adaptive dynamics (i.e. ab 6→ Ab → AB).

Alternatively, if G is the fitness graph under consideration then this condition could also be written

in terms of the fitness graph as {(ab)(aB), (aB)(AB), (Ab)(AB)} ⊆ E(G) but (ab)(Ab) 6∈ E(G).

This is shown in Figure 3.1b: for x1 ∈ {a,A} and x2 ∈ {b, B}, I introduce the symbol x1↑- x2 to

represent sign epistasis at the first locus and x1↑-x2 for sign epistasis at the second locus.

Finally, a system has reciprocal sign epistasis if both conditions of magnitude epistasis are

broken [178, 179, 39]. This is like having sign epistasis on both loci.

Definition 3.6 ([178]). Given two loci, if f(AB) ≥ f(ab) but f(ab) > f(Ab) and f(ab) > f(aB)

then there is reciprocal sign epistasis between those two loci.

In other words, if both mutations have one sign on their own, but the opposite sign together – either

bad + bad = good or good + good = bad – then the landscape has reciprocal sign epistasis [178,

179, 39]. A classic example of reciprocal sign epistasis is a lock-and-key, changing just one of the

lock or the key breaks the mechanism, but changing both can be beneficial. In terms of induced

fitness (sub)graphs, that means that there is no direct adaptive path from ab to AB through either

the first or second locus: ab 6→ Ab → AB and ab 6→ aB → AB. This is shown in Figure 3.1c: for
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Figure 3.2: Three different kinds of epistasis possible in fitness graphs: no epistasis (↑), sign
epistasis (↑- ,↑-), and reciprocal sign epistasis (|--). Arrows in the fitness graph are directed from
lower fitness genotypes towards mutationally adjacent higher fitness genotypes. In the middle
of each fitness graph is a symbol showing the kind (and orientation) of epistasis. Note that the
bottom left (	) and top right (�) fitness graphs violate transitivity and cannot occur with scalar
fitness values (I will introduce alternatives to scalar fitness in Chapter 6)

.

x1 ∈ {a,A} and x2 ∈ {b, B}, I introduce the symbol x1 |--x2 to represent reciprocal sign epistasis on

this pair. As with sign epistasis the conditions in Definition 3.6 could be rewritten (in the obvious

way) in terms of the sgn(◦) function or the fitness graph.

Finally, whereas Figure 3.1 visualized a prototypical example of each kind of epistasis, Figure 3.2

visualizes all the fitness graphs on two loci and categorizes the type of epistasis present by looking

at the rotations of the symbols ↑, ↑- , ↑-, and |--. Note the two cases of non-transitive fitness graphs

in the corners of Figure 3.2 labeled by � – these sort of graphs cannot be represented by scalar

fitnesses, and I deal with them as games (or game landscapes) in Chapters 6 and 7.

3.2.1 Smooth, semismooth and rugged landscapes

The presence or absence of certain types of epistasis (and corresponding induced fitness (sub)graphs)

produces different kinds of fitness landscapes. A landscape with non-interacting loci or only mag-

nitude epistasis is called smooth [228, 39]. An empirical example would be the Escherichia coli

β-lactamase fitness landscape measured by Chou et al. [30] and shown in Figure 3.3a.
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(a) E. coli β-lactamase
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(b) P. falciparum dihydrofolate reductase

Figure 3.3: Two examples of empirical biallelic fitness landscapes on four loci. Arrows
are directed from lower fitness genotypes to higher and fitness optima are circled. Examples of
adaptive dynamics are highlighted with thick black arrows. Figure 3.3a, based on the E. coli β-
lactamase data of Chou et al. [30], is a smooth landscape with no sign epistasis. Thus, it contains a
single optimum (1111). Figure 3.3b is based on Lozovsky et al. [135]’a P. falciparum dihydrofolate
reductase growth rate data in the absence of pyrimethamine. It has two peaks (0011 & 1111) and
both single sign (an example in yellow; ↑- ) and reciprocal sign epistasis (example in red; |--). Based
on Szendro et al. [209]’s Figure 1.

Since a smooth landscape is characterized by the absence of sign epistasis, I will analogously

call a fitness landscape semismooth if it has no reciprocal sign epistasis. My naming of this new

kind of fitness landscape will become more clear in Section 4.3, where I show its many structural

commonalities with smooth landscapes (like a unique peak) and formal correspondence to the

acyclic unique sink orientation graphs used in the analysis of the simplex algorithm for linear

programming.

But in nature there exist natural fitness landscapes that are even more complicated than semis-

mooth ones. For example, we know that some landscapes can contain reciprocal sign epistasis like

the Lozovsky et al. [135] Plasmodium falciparum dihydrofolate reductase fitness landscape in Fig-

ure 3.3b. This is a rugged fitness landscape with two distinct fitness peaks at 0011 and 1111. In

general, I will call a fitness landscape rugged if it has reciprocal sign epistasis (even if there are not

multiple local peaks in the landscape). Although, as I discuss in Section 3.6, there is not enough

data to justify postulating probability distributions over large landscapes, the standard biological

intuition is that natural landscapes are at least a bit rugged and tend to have multiple peaks.

3.3 Classical NK-model and one-gene-one-function

The NK-model is a family of fitness landscapes [90, 91] that was introduced to study the landscape

ruggedness that we expect to see in nature. This model allows tuning the amount of epistasis: the

fitness contribution of each of the n loci depends not only on its gene, but also on the genes at up
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Computational Terms Evolutionary Terms
valued constraint satisfaction problem generalized NK-model

variable gene
variable index locus

single variable assignment allele
assignment to all variables genotype

constraint gene interaction
constraint graph gene interaction network

arity degree of epistasis
objective function fitness

Table 3.1: Dictionary for translating between the languages of artificial intelligence and evolution-
ary biology. A preliminary version of this table appeared in Strimbu [206].

to K other loci.

Definition 3.7 ([90, 91, 89]). The (classic) NK model is a fitness landscape on {0, 1}n. The

n loci are arranged in a gene-interaction network where each locus i is linked to K other loci

ni1, ..., n
i
K and has an associated fitness contribution function fi : {0, 1}K+1 → R+ Given a vertex

x ∈ {0, 1}n, we define the fitness f(x) =
∑n
i=1 fi(xi;xni1 ...xniK ).

By varying K we can control the amount of epistasis in the landscape. The model also provides

an upper bound of n
(
K+1

2

)
on the number of gene pairs that have epistatic interactions. Typi-

cally, in the biology and statistical physics literature, the fitness contributions fi and sometimes

the gene-interaction network are chosen uniformly at random from some convenient probability

distribution. In contrast, the approach of theoretical computer scientists is to consider arbitrary

rather than random choices for each fi and the gene-interaction network. This is an important

cultural difference in methodology between statistical physics and computer science that I discuss

in more detail in section 3.6.

The more pressing issue with the classic NK-model, however, is that it seems to enshrine – or

at least heavily favour – the one-gene one-function view of molecular biology. The easiest way to

interpret the fitness components in the classic NK-model is as ‘basic functions’ that together add

up to the total fitness of the organism. In this way, the fitness components serve as a rudimentary

decomposition of the genotype to phenotype map. But in this interpretation, if each locus i is

linked to a single fitness component fi then we are linking one gene to one function. Sure, that

function is mediated by K other genes, but there are still no more functions than there are genes.

3.4 Generalized NK-model as valued constraint satisfaction

We can avoid hard coding this strange one-gene-one-function assumption into the model by defining

a generalized NK-model that does not force the number of fitness components to be equal to the
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number of genes. This generalized NK-model is not only more biologically plausible but is also

equivalent to the valued constraint satisfaction model studied in computer science. For simplicity,

I will present this model in both the language of computer science and biology, with a dictionary

between the basic terms given in Table 3.1. I will use both languages interchangeably throughout,

and present the general definition for a fitness function f : A→ Z with A = D1×· · ·×Dn as given

at the start of this chapter.

It is helpful to define a special notation for the restriction of a variable assignment (genotype)

to some subset of variables, with indices (loci) in a set S ⊆ [n], I will denote this by x[S]; so

x[S] ∈
∏
j∈S Dj . To reference the assignment to the variable at position i, I will usually write xi

unless it is ambiguous, in which case I will use the more general notation x[i]. If I want to modify

x by changing a single variable, say the variable at position i, to some element b ∈ Di, then I will

write x[i 7→ b].

A (valued) constraint with scope S ⊆ [n] is a function CS :
∏
j∈S Dj → Z. For uniform

domains, I will abbreviate
∏
j∈S Dj as DS (or for Boolean domains: {0, 1}S). The arity of a

constraint CS is the size |S| of its scope. For unary (arity of 1) and binary (arity of 2) constraints

I will omit the set notation and just write Ci for C{i} or Cij for C{i,j}. I will represent the

values taken by a unary constraint Ci for each domain element by an integer vector of length |Di|,

and represent the values taken by a binary constraint Cij for each pair of domain elements by an

integer matrix, where xi selects the row and xj selects the column. A zero-valued constraint (of any

arity) will be denoted by 0. In biological terminology, a valued constraint is a fitness component

(often associated with a particular function) and its arity is that component’s degree of epistasis.

These valued constraints are a generalization of the fitness components fi from the classic NK-

model (Definition 3.7).

We can now define the generalized NK-model as a representation or implementation of a fitness

landscape by a VCSP-instance:

Definition 3.8. An instance of the valued constraint satisfaction problem (VCSP) is a set of

constraints C = {CS1
, . . . , CSm}. I will say that a VCSP-instance C implements a fitness function

f if f(x) =
∑m
k=1 CSk(x[Sk]).

In computer science, we are usually interested in the VCSP problem of maximizing f .

Note that instances of the classic NK-model form a subset of the VCSP-instances of the gen-

eralized NK-model. In particular, instead of an arbitrary number m of constraints, the classic

NK-model would require n = m and demand than for each 0 ≤ i ≤ m, i ∈ Si and |Si| = K + 1.

The arity of a VCSP-instance – or, in biological terminology, the degree of epistasis K of the
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generalized NK-model instance – is the maximum arity over its constraints; if this maximum arity is

2, then we will call it a binary VCSP-instance. Note that not all fitness functions can be expressed

by binary VCSP-instances:

Example 3.9. Needle-in-a-haystack fitness function δy : {0, 1}n ⇒ R with y ∈ {0, 1}n is given by:

δy(x) =


1 if x = y

0 otherwise

(3.1)

and cannot be expressed by any binary Boolean VCSP-instance if n > 2.

Given any VCSP-instance C, we can take A = D1 × · · · × Dn as the set of all possible as-

signments, fC as the fitness function implemented by C, and N as the 1-flip neighbourhood, to

obtain an associated fitness landscape, (A, fC , N), and hence an associated fitness graph, GC , by

Definition 3.2. Note that the vertex set of GC is the set of possible assignments (genotypes), A,

and hence is exponential in the size of the instance, C, in general.

The generalized NK-model can then be seen as the set of all fitness landscapes implementable

by some VCSP-instance. Unlike the custom with traditional accounts of the (classic) NK-model,

I will not simplify the analysis by just assuming some specific distribution over this space of these

possible fitness landscapes. In Section 3.6, I will discuss in more detail why this can be a more

useful (or at least different) perspective.

Each binary VCSP-instance also has an associated constraint graph, defined as follows, whose

vertex set has the size of the number of loci and is thus polynomial in the size of the instance:

Definition 3.10. Given any binary VCSP-instance C, the corresponding constraint graph has

vertices V (C) = [n], edges E(C) = {ij | Cij ∈ C, Cij 6= 0}, constraint-neighbourhood function

NC(i) = {j | ij ∈ E(C)}, and degree dC(i) = |NC(i)|.

In biological terminology, we can think of the constraint graph as the gene-interaction net-

work. The strength of this name will be obvious after we see how the edges of the minimal gene-

interaction networks correspond to the magnitude (Section 3.7) and sign epistasis (Section 3.8) in

the fitness landscape.

Since each instance of the classic NK-model is an instance of the generalized model, we can

look at the family of gene-interaction networks that the classic model generates. For K = 0, the

loci are non-interacting and so the gene-interaction network has no edges. But the K = 1 case is

a little bit more interesting:

Proposition 3.11. The classic NK-model with K ≤ 1 is equivalent to the binary generalized NK-
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model where the gene-interaction network has each connected component as a tree or a tree plus

an extra edge.

Proof. (⇒): Draw a directed edge from each locus of the classic model to the locus that it interacts

with (and no edge if its fitness component is unary). Now look at any connected component in

this graph, say it has k vertices. Since it is connected, it must have at least k − 1 edges (and thus

be a tree). And since every edge has a parent, and each vertex is the parent of at most one edge,

it must have at most k edges (and thus be a tree plus an extra edge).

(⇐): Let us look at each connected component in the generalized model and show how to convert

each into the classic model.

If a connected component with k vertices has k − 1 edges then it is a tree. Pick any vertex as

the root and direct edges towards the root. Now, each vertex will have at most one out-edge.

If a connected component with k vertices has k edges then it must contain a cycle on l ∈ [3, k]

vertices. Pick either direction around the cycle and direct all edges to follow that direction. If we

then look at the remaining undirected edges in this connected component, they will form a forest

of l trees, where each tree will contain exactly one vertex from the cycle. Go inside each tree and

set the cycle vertex as the root and direct edges towards the root. Now, ever vertex in the tree

will have one out-edge and the root will also have one out-edge from being on the cycle.

Repeat this for all the components in the graph. Now associate each constraint in the gener-

alized model (i.e. now a directed edge in the graph) as a fitness component in the classic model

corresponding to the locus that is the parent (or initial vertex) of each edge.

In Chapter 5, I will look at other sub-classes of the generalized NK-model and prove that some

sub-classes specify fitness landscapes with only short adaptive paths.

3.5 Landscapes vs dynamics as problems vs algorithms

By even discussing fitness landscapes, I am carving up nature into two parts:

1. a space on which things happen, and

2. the dynamics that happen.

Not everyone thinks this is a useful separation [57], but I think it can bring clarity and understand-

ing. This separation is akin to the distinction that computer scientists carve between problems and

algorithms. Families of fitness landscapes are like problems to be ‘solved’ by evolution and specific
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fitness landscapes on which populations evolve are problem-instances. In contrast, I will consider

the population structure, update rules, developmental processes, mutation operator or bias, etc as

together specifying the algorithm that is evolution. This allows me to keep the class of problems

fixed while considering the performance of any algorithm (maybe within some reasonable class)

on that class of problems. Or alternatively, as I do in Chapter 7, to fix an algorithm and thus

define the problem as the thing that algorithm ‘solves’. Philosophically, this distinction between

problem and algorithm is like defining a separation between the environment and the population

or system evolving within it. This is not always the best representation, but sometimes it can be

a very fruitful one.

This distinction between algorithm and problem was already helpful in Chapter 2 when I

defined the notion of proximal vs ultimate constraints on evolution. But it comes up in this

chapter even though this chapter is largely concerned with understanding problems and how they

are represented. For example, I will often refer to the adjacency graph of the genotype space as

the mutation graph. This is because in practice, these two concepts are intertwined and defined

circularly. We often think of mutations as occurrences that moved a genotype to a nearby point

in genetic space, and we think of two points in genotype space as adjacent or nearby if a single

mutation can move us between them. But technically, these spaces can be distinct. We could use a

genetic notion of adjacency for defining structural features like local peaks or epistasis, without full

knowledge of the possible mutations (or even more complicated moves in the case of recombination)

in our system. From this, more general perspective, the genetic distance is a property of our

problem, while the mutation distance is a property of our algorithm. In particular, in Chapter 4,

we can think of the genotype space as purely a feature of the problem, since I will want to

reason about any evolutionary dynamics (i.e. algorithm) on that space (and I will establish results

like Corollary 4.27 that are robust over this feature). In particular, the evolutionary algorithm

might use an arbitrary (potentially dynamic) mutation- or recombination-structure that is not

the same as the genotype space. But in Chapter 5, I will focus on more specific algorithms

where those algorithm’s potential mutation neighbourhoods match the problem’s genetic adjacency

neighbourhoods.

3.6 Random vs concrete fitness landscapes

The classic NK model, and even variants like the generalized NK-model [81], are frequently studied

through simulation and statistical analysis on random landscapes. The best current techniques in

theoretical evolutionary biology come from the statistical mechanics of disordered systems and rely
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on “[t]he idea that unmanageable complexity can be replaced by randomness” [81]. This statistical

approach uses randomness in two places:

1. the random mutations, birth-death events, and other physical and biological processes within

the algorithm of evolution, and

2. the theoretical distributions of fitness landscapes themselves.

For a computer scientist, the first use of randomness corresponds to the analysis of randomized al-

gorithms – certainly a good decision when thinking about evolution. The second use of randomness

corresponds to average-case analysis over problem instances. In a typical biological treatment, the

gene-interaction network is assumed to be something simple like a generalized cycle (where xi is

linked to xi+1, ...xi+K) or a random K-regular graph. The fitness contributions fi are usually sam-

pled from some convenient choice of distribution. This generates a random instance. But, unlike

biologists, when the real-world distribution of problem-instances is unknown or hard to charac-

terize, computer scientists are hesitant to pick a specific simple distribution just to analyze the

algorithm. Instead, computer scientists usually specify a formal, logically-defined hypothesis class

of conceivable problem-instances and then analyze their algorithm (for arbitrary distributions)

over these instances. Usually, computer scientists move on to considering average case analysis

over more restricted distributions or other complexity measures only after the worst-case analysis

has been well characterized. As far as I know, in the case of fitness landscapes, such worst-case (or

arbitrary distribution) analysis had not been fully explored before the jump to average case over

easy and convenient distributions of problem instances was made. So in Chapters 4 and 5, I will

give examples of such worst-case analysis.

Given a historical disconnect between theory and data [166, 125], the choice for distributions

was usually made out of analytic convenience or (occasionally) out of the belief that a uniform

distribution is akin to no assumption. Since there is no strong empirical or theoretically sound

justification for the choice of particular distributions of large fitness landscapes, I avoid relying

on a simple generating distribution and instead reason from only the logical description of the

model. This can be thought of as worst-case analysis, or as analysis for arbitrary distributions

of landscapes. By following this approach, we know that our results are features of the logic

that characterizes a particular family of fitness landscapes and not artifacts of a particular simple

sampling distribution. This is a standard method in theoretical computer science, but it is not as

common in statistical physics or theoretical biology.

Although there is evidence for simple distributions on small fitness landscapes (on upto 8

genes; see Franke et al. [50] and Szendro et al. [209]) and a growing literature of measured fitness
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landscapes [178, 30, 135, 166, 183, 129, 125, 14, 46], there is little to no data on the distribution

of large (i.e. on many loci) fitness landscapes in nature. And given the exponential size of fitness

landscapes, it is unlikely that such data could be collected.

Thus, it is important to build theory that does not assume simple distributions over landscapes.

In the future, if we discover a theoretical or empirical way of finding these distributions (that is

more well-founded than just choosing a distribution that simplifies the analysis of our model) then

we can consider how to extend this work to those distributions over landscapes. But that is outside

of the scope of this thesis.

3.7 Magnitude-equivalence and simple VCSP instances

It is clear from Definition 3.8 that different VCSP-instances can implement the same fitness func-

tion.

Example 3.12. Consider, the following two small VCSP-instances:

x1 x2 C∅ = 1 x1

0

1

 x2

0

1


1 2

2 3

 vs.

where I draw the C∅ constraint separately, unary constraints next to the variable that selects their

row, and binary constraints along the edge linking the variable that selects the matrix’s row to the

variable that selects the matrix’s column.

Although these two instances have different constraint graphs, the fitness function they imple-

ment is [f(00), f(01), f(10), f(11)] = [1, 2, 2, 3] in both cases.

We can capture the equivalence in Example 3.12 with the following definition:

Definition 3.13. If two VCSP-instances C1 and C2 implement the same fitness function f , then I

will say they are magnitude-equivalent.

I will show in this section that for binary Boolean VCSP-instances each equivalence class of

magnitude-equivalent VCSP-instances (or – in biological terminology – magnitude-equivalent gene-

interaction network) has a normal form: a unique, minimal, and easy to compute representative

member with special properties.

Definition 3.14. A binary Boolean VCSP-instance C is simple if:

• every unary constraint has the form Ci =

0

ci

 and
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• every binary constraint has the form Cij =

0 0

0 cij

.

In drawings of constraint graphs of simple VCSP-instances I will often denote the unary constraint0

ci

 by just ci next to the variable, and the binary constraint

0 0

0 cij

 by just cij on the edge

between variables. Note that these ci and cij can be either negative or positive, and their sign will

be very important when I introduced sign-equivalence in Section 3.8.

I now give a direct proof of the following simplification result which is analogous to similar

results using constraint propagation in the standard VCSP [34] and well-known for pseudo-Boolean

functions [37]:

Theorem 3.15. Any binary Boolean VCSP-instance C′ can be transformed into a unique simple

VCSP-instance C that is magnitude-equivalent to C′. Moreover, C can be constructed from C′ in

linear time.

Proof. First two key observations: (1) Any unary Boolean constraint C ′i : {0, 1} → Z can be

rewritten as a linear function:

c′i(x) = (1− xi)C ′i(0) + xiC
′
i(1) (3.2)

and (2) any binary Boolean constraint C ′ij : {0, 1} × {0, 1} → Z can be rewritten as a multilinear

polynomial of degree 2:

c′ij(x) = (1− xi)(1− xj)C ′ij(0, 0) + (1− xi)xjC ′ij(0, 1) + xi(1− xj)C ′ij(1, 0) + xixjC
′
ij(1, 1). (3.3)

From this, we can simplify C′ just by simplifying polynomials:

f(x) = C ′∅ +

n∑
i=1

C ′i(xi) +
∑

ij∈E(C′)

C ′ij(xi, xj) = C ′∅ +

n∑
i=1

c′i(x) +
∑

ij∈E(C′)

c′ij(x) (3.4)

= C∅ +

n∑
i=1

xici +
∑

1≤i<j≤n

xixjcij (3.5)

where we note that the last part of Equation 3.4 is a sum of a constant, some linear functions, and

some multilinear polynomials of degree 2, and is thus itself a multilinear polynomial of degree 2 (or

less). Equation 3.5 follows from Equation 3.4 by multiplying out into monomials and then grouping

the coefficients of each similar monomial. In particular, this gives us the following coefficients:
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ci = C ′i[1]− C ′i[0] +
∑

j | ij∈E(C′)

C ′ij [1, 0]− C ′ij [0, 0] (3.6)

cij = C ′ij [0, 0]− C ′ij [0, 1]− C ′ij [1, 0] + C ′ij [1, 1] (3.7)

The above calculation can be done in linear time. As the last step in the simplification, note

that Equation 3.5 corresponds to a VCSP-instance C comprising a nullary constraint C∅, unary

constraints Ci =

0

ci

, and binary constraints Cij =

0 0

0 cij

.

The next theorem shows that a simple VCSP-instance has the minimal constraint graph of any

binary instance that implements the same fitness function and the approach I take in its proof

helps justify the term “magnitude”:

Theorem 3.16. Let C be a simple binary Boolean VCSP-instance. If the binary Boolean VCSP-

instance C′ is magnitude-equivalent to C, then E(C) ⊆ E(C′).

Proof. Let ei ∈ {0, 1}n be a variable assignment that sets the ith variable to one, and all other

variables to zero. Similarly, let eij ∈ {0, 1}n be a variable assignment that sets the ith and jth

variables to one, and all other variables to zero. Let f be the fitness function implemented by C.

Since C is simple, we have:

f(eij)− f(ei)− f(ej) + f(0n) = cij (3.8)

where we take cij = 0 if ij /∈ E(C). Similarly, if C′ also implements f , we have:

f(eij)− f(ei)− f(ej) + f(0n) = C ′ij(1, 1)− C ′ij(1, 0)− C ′ij(0, 1) + C ′ij(0, 0) (3.9)

If ij ∈ E(C) then cij 6= 0, so C ′ij(1, 1)−C ′ij(1, 0)−C ′ij(0, 1)+C ′ij(0, 0) 6= 0 and hence ij ∈ E(C′).

Note that Equation 3.8 is a measure of magnitude epistasis. In particular, cij = 0 if and

only if f(eij) − f(ei) = f(ei) − f(0n) and f(eij) − f(ej) = f(ej) − f(0n). In other words, a

constraint between loci i and j is absent in the simplified (i.e., minimal magnitude-equivalent)

gene-interaction network if and only if i and j are non-interacting loci in all genetic background. If

i and j have magnitude epistasis or more (sign or reciprocal sign) then the constraint is present in

all gene-interaction networks. Hence, simple networks track magnitude epistasis and higher. That

is why I use the word ‘magnitude’ when I call these networks C and C′ as “magnitude”-equivalent.
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3.7.1 Measuring fitness landscapes by learning simple gene-interaction

networks

Perhaps more importantly, Equation 3.8 specifies a simple algorithm for inferring gene-interaction

networks from existing data of local fitness landscapes. Whole fitness landscapes are exponentially

large in the number of genes and thus, even for a moderate number of genes, directly measuring

every genotype’s fitness becomes unimaginable – even for a theorist. But instead we can measure

local fitness landscapes (or for a computer scientist, query a specific set of fitness values as set out

below). A local fitness landscape measurement of depth d around a wildtype w ∈ A (i.e.,

around an ‘original’ or ‘default’ type, this is an experiment-dependent definition but the wildtype

is usually the typical form that occurs in nature) is a measurement of the fitness of w and all other

genotypes x ∈ A that are d or fewer mutations away from w. For a Boolean fitness landscape, a

local fitness landscape measurement of depth d will require on the order of
∑d
i=1

(
n
i

)
fitness assays.

Thus, this measurement is possible in theory for constant depth d. And in practice, it has been

measured to depth 2 for a 333-nucleotide small nuclear RNA gene [183], and for a 72-nucleotide

transfer RNA gene [129] – both in yeast.

If we take the wildtype as 0n in Equation 3.8 and assume that fitness landscape is expressible by

a binary gene-interaction network then these local fitness landscape measurements provide enough

data to get each cij by iterating over every pair 1 ≤ i < j ≤ n. Note that because we assume

the fitness landscape is expressible by some binary gene-interaction network, this requires only a

quadratic number of queries to the fitness function and not an exponential number. We can further

get C∅ = f(0n) and ci = f(ei)−f(0n) (for a further n queries to the fitness function), thus getting

all of the constraints in the simple gene-interaction network. This is actually equivalent to just

over-fitting a polynomial; i.e. to specifying a multilinear polynomial with 1 + n+
(
n
2

)
parameters

from 1 + n +
(
n
2

)
datapoints. Thus, when we query a gene-interaction network learned in this

way on a point x outside the training set then it is better to think of the result as a polynomial

interpolation rather than a prediction. And in this way, it is better to interpret the learned gene-

interaction network itself as a way to summarize – or represent in a different way – the local

fitness landscape measurement. This is akin to how I propose that we think of the game assay in

Chapter 7 for summarizing the ecology of a different kind of evolutionary dynamic.

Since my above proposal for learning gene-interaction networks from local fitness landscape

measurements is equivalent to linear regression, it will also benefit from our rich understanding of

how measurement noise can be handled and confidence intervals propagated in linear regression.

Further work can explore this learning algorithm more deeply and apply it to experimental fitness
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landscapes, but such work is beyond the scope of this thesis.

3.8 Sign-equivalence and trim VCSP instances

In the previous section we looked at the equivalence class of all VCSP-instances which implement

precisely the same fitness function. However, when investigating the performance of arbitrary

adaptive dynamics or local search algorithms, the exact values of the fitness function are not

always relevant. This is because different particular evolutionary dynamics or search heuristics

will handle particular fitness differences differently. But the structure of adaptive paths matters

to all adaptive dynamics, since they are (by definition) restricted to choosing between just these

adaptive paths. As such, it can be sufficient to consider only the fitness graph.

It is also important to focus on fitness graphs for experimental reasons. This is essential for

experimental systems where fitness cannot be directly measured numerically and competition as-

says can only establish relative fitness ordering of the genotypes (i.e., direction of fitness graph

edges). However, even in experimental models where fitness can be measured directly, the specific

numbers can be a little arbitrary. Often, any strictly monotonic transformation of the measured

values would also be a reasonable alternative fitness measure. But such strictly monotonic trans-

formations can introduce magnitude epistasis, and so change the simple gene-interaction network

of Section 3.7. This ambiguity has been previously considered for smooth fitness landscapes under

the concept of global epistasis [169]. But in this section, I will provide a more general account

by noticing that even though magnitude epistasis might change, the fitness graph itself does not

change under strictly monotonic transformations of the fitness function. As such, it is important

to focus on a very convenient representation of the fitness graph.

Unfortunately, different fitness functions implemented by simple VCSPs that are not magnitude-

equivalent and have different gene-interaction networks can still implement the same fitness graph.

Example 3.17. Let f be a fitness function implemented by a simple VCSP-instance C, where the

fitness values of all adjacent genotypes are distinct, but there is at least one pair i, j of positions

with no constraint Cij.

Now consider the new fitness function f ′(x) = 2f(x) +Cij(xi, xj) where Cij =

0 0

0 1

. Since

all adjacent fitness values given by 2f(x) differ by at least 2, every edge is still present in the

new fitness graph, and no directions are changed by the new constraint. Thus, the fitness graph

corresponding to f ′ is unchanged, but we cannot eliminate this new Cij constraint (and associated

magnitude epistasis) without changing the precise values of the fitness function.
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To capture the similarity between f and f ′ in Example 3.17, I introduce a more abstract

equivalence relation:

Definition 3.18. If two VCSP-instances C1 and C2 give rise to the same fitness graph, then I will

say they are sign-equivalent.

Note that sign-equivalence is an even larger (or more coarse-grained) equivalence class than what

would be defined by strictly monotonic transformations of the fitness function (as shown by Ex-

ample 3.17).

As with magnitude-equivalence, I will show that for binary Boolean VCSP-instances it is pos-

sible to define a normal form or minimal representative member of each equivalence class of sign-

equivalent VCSP-instances with a unique minimal constraint graph (or, in biological terminology,

gene-interaction network). Unfortunately, we will see that, unlike the situation for the easy-to-

compute minimal magnitude-equivalent constraint graph, this minimum sign-equivalent constraint

graph is NP-hard to compute (Theorem 3.26).

To get started, it is useful to more formally elaborate the notion of sign-epistasis from Defini-

tion 3.5 to high dimensional fitness graphs:

Definition 3.19. In a Boolean fitness graph G with vertex set {0, 1}n, I will say that i sign-

depends on j if there exists an assignment x ∈ {0, 1}n such that:

(x, x[i 7→ xi]) ∈ E(G) but (x[j 7→ xj ], x[i 7→ xi, j 7→ xj ]) 6∈ E(G) (3.10)

Note that i sign-depends on j if and only if, for any fitness function f that corresponds to the

fitness graph G, there exists x ∈ {0, 1}n such that:

sgn(f(x[i 7→ xi])− f(x)) 6= sgn(f(x[i 7→ xi, j 7→ xj ])− f(x[j 7→ xj ])). (3.11)

Equivalently, we can say that i sign-depends on j if and only if there is at least one genetic

background x such that i ↑- j or i |--j (i.e., i and j have sign epistasis or reciprocal sign epistasis).

I will say that i and j sign-interact if i sign-depends on j or j sign-depends on i (or both). If

i and j do not sign-interact, then I will say that they are sign-independent.

Definition 3.20. A simple binary Boolean VCSP-instance C with associated fitness graph GC is

called trim if for all ij ∈ E(C), i and j sign-interact in GC .

A sign-equivalent analog of Theorem 3.15 guarantees a normal form:
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Theorem 3.21. Any simple binary Boolean VCSP-instance C′ can be transformed into a trim

VCSP-instance C that is sign-equivalent to C′.

To prove Theorem 3.21, I now establish two propositions: Proposition 3.22 connects the magni-

tude of constraints with their effect on fitness graphs, and Proposition 3.23 connects the magnitude

of constraints to sign-interaction.

Proposition 3.22. Given a simple binary Boolean VCSP-instance C implementing a fitness func-

tion f , if removing the constraint Cij changes the corresponding fitness graph, then for at least one

k ∈ {i, j} there exists some x ∈ {0, 1}n with xi = xj = 1 such that:

cij ≥ f(x)− f(x[k 7→ 0]) > 0 or cij ≤ f(x)− f(x[k 7→ 0]) < 0 (3.12)

Proof. Without loss of generality (by swapping i and j in the variable numbering if necessary), we

can suppose that k = i. Consider two cases:

Case 1 (cij > 0): If removing Cij changes the fitness graph, then there exists some x ∈ {0, 1}n

with xi = xj = 1 such that:

f(x) > f(x[i 7→ 0]) but f(x)− cij ≤ f(x[i 7→ 0]). (3.13)

We can re-arrange Equation 3.13 to get cij ≥ f(x) − f(x[i 7→ 0]) > 0 where the strict inequality

follows from the left clause of Equation 3.13.

Case 2 (cij < 0): This is the same as case 1, except that the direction of the inequalities in

Equation 3.13 are reversed.

Proposition 3.23. Given a simple binary Boolean VCSP-instance C implementing a fitness func-

tion f , if there exists a constraint Cij in C, some assignment x ∈ {0, 1}n with xi = xj = 1, and

some k ∈ {i, j} such that:

cij ≥ f(x)− f(x[k 7→ 0]) > 0 or cij ≤ f(x)− f(x[k 7→ 0]) < 0 (3.14)

then i sign-depends on j in the associated fitness graph GC.

Proof. As in the proof of Proposition 3.22, we can suppose that k = i (by swapping i and j in the

variable numbering if necessary). Also, as in the proof of Proposition 3.22, the case for cij < 0

is symmetric (by flipping the direction of inequalities) to cij > 0. Thus, we will just consider the

case where k = i and cij > 0:
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Given that Equation 3.14 tells us that f(x) > f(x[i 7→ 0]) (i.e., that x[i 7→ 0]x ∈ E(GC)), to

establish that i sign-depends on j per Definition 3.19, we need to show that f(x[j 7→ 0]) ≤ f(x[i 7→

0, j 7→ 0]) (i.e., that x[i 7→ 0, j 7→ 0]x[j 7→ 0] 6∈ E(GC)). So, let us look at the difference of the

latter:

f(x[j 7→ 0])− f(x[i 7→ 0, j 7→ 0]) = f(x)− f(x[i 7→ 0])− cij ≤ 0 (3.15)

where the equality follows from Definition 3.8 (C implements f) and Definition 3.14 (C is simple),

and the inequality follows from the first part of Equation 3.14.

Now, I can assemble Propositions 3.22 and 3.25 into a proof of Theorem 3.21:

Proof of Theorem 3.21. Note that Equations 3.12 and 3.14 specify the same conditions, hence

the negation of this condition:

for all x ∈ {0, 1}n with xi, xj = 1 and all k ∈ {i, j}, we have that:

f(x)− f(x[k 7→ 0]) > c′ij ≥ 0 or f(x)− f(x[k 7→ 0]) < c′ij ≤ 0

(3.16)

can be used to glue together the contrapositives of Proposition 3.23 (if i and j are sign-independent

then Equation 3.12 does not hold) and Proposition 3.22 (if Equation 3.14 does not hold then C ′ij

can be removed from C′ without changing the corresponding fitness graph). So we can convert C′

to a trim VCSP-instance that is sign-equivalent to C′ by simply removing all C ′ij ∈ C′ where i and

j are sign-independent in the associated fitness graph GC′ .

The next result is the sign-equivalence analog of Theorem 3.16. It shows that a trim VCSP-

instance has the minimal constraint graph of any binary instance with the same associated fitness

graph:

Theorem 3.24. Let C be a trim binary Boolean VCSP-instance. If the binary Boolean VCSP-

instance C′ is sign-equivalent to C, then E(C) ⊆ E(C′).

To prove Theorem 3.24, we just need to show that if i and j sign-interact in a fitness graph

G, then any VCSP-instance that has the same associated fitness graph G must have an edge

between i and j in its constraint graph. Or, in other words, constraints between sign-interacting

positions cannot be removed while preserving sign-equivalence. That is, we just need the following

proposition:



3.8. SIGN-EQUIVALENCE AND TRIM VCSP INSTANCES 67

Proposition 3.25. Let C be a binary Boolean VCSP-instance with associated fitness graph GC. If

i, j sign-interact in GC, then the constraint Cij in C is non-zero.

In other words, if i 6= j sign-interact somewhere in the fitness graph, there must a gene-

interaction between i and j in any gene-interaction network that describes that fitness graph.

Proof. Without loss of generality, assume that we have an edge in GC from x[i 7→ xi] to x. Thus,

the fitness function f implemented by C must satisfy the following two inequalities:

f(x) > f(x[i 7→ xi]) and f(x[j 7→ xj ]) ≤ f(x[i 7→ xi, j 7→ xj ]) (3.17)

Define gi(xi) = Ci(xi) +
∑
k 6=j Cik(xi, xk) and similarly for gj . Also let Kij(x) be the part

of f independent of xi, xj : i.e., f(x) = Kij(x) + gi(xi) + gj(xj) + Cij(xi, xj). Rewriting (and

simplifying) the two parts of Equation 3.17, we get:

gi(xi) + Cij(xi, xj) > gi(xi) + Cij(xi, xj) (3.18)

gi(xi) + Cij(xi, xj) ≤ gi(xi) + Cij(xi, xj) (3.19)

These equations can be rotated to sandwich the gi terms:

Cij(xi, xj)− Cij(xi, xj) > gi(xi)− gi(xi) ≥ Cij(xi, xj)− Cij(xi, xj) (3.20)

which simplifies to Cij(xi, xj) − Cij(xi, xj) > Cij(xi, xj) − Cij(xi, xj) and – due to the strict

inequality – establishes that Cij is non-zero.

3.8.1 Hardness of sign-minimization

However, unlike with magnitude-equivalence, it is NP-hard to determine a minimal sign-equivalent

VCSP-instance, as the next result shows:

Theorem 3.26. The problem of deciding whether i and j sign-interact in a given simple binary

Boolean VCSP-instance is NP-complete.

Notice that the above means that finding the minimal sign-equivalent gene-interaction network is

hard because by Proposition 3.25 a constraint Cij cannot be trimmed only if i and j sign-interact.

This means that, for example, even if we could use the technique in Section 3.7.1 to infer the

minimal magnitude-equivalent gene-interaction network specifying a fitness landscape, we would
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would not be able to then produce the minimal sign-equivalent gene-interaction network. In other

words, we cannot in general figure out efficiently (i.e., in time polynomial in the number of loci) if

two loci have sign epistasis (or reciprical sign epistasis) somewhere in a fitness landscape or if the

two loci just have magnitude epistasis.

Proof. To see that this problem is in NP, note that we can provide a variable assignment x as

a certificate and check that under that variable assignment either i sign-depends on j or j sign-

depends on i (or both).

I will establish NP-hardness by reduction from the SubsetSum problem, which is known to be

NP-complete [52]: A set of integers {s1, . . . , sn} and a target t is a yes-instance of the SubsetSum

problem if there exists some subset S ⊆ [n] such that
∑
i∈S si = t.

Now consider a simple binary Boolean VCSP-instance C on n + 2 variables, that implements

fitness function f and has associated fitness graph GC , whose constraint graph has the shape of a

star, with central variable position n+ 2:

x1

1

x2

1

· · · xn−1

1

xn

1

xn+2 −(3t+ 1)

xn+1

1

3s23s1 3sn−1 3sn

2

In words, the constraints of C are given by:

• unary constraints Ci =

0

1

 for all i ≤ n+ 1 and

• unary constraint Cn+2 =

 0

−(3t+ 1)

 on the central variable n+ 2;
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• binary constraints Ci,n+2 =

0 0

0 3si

 between the central variable n+ 2 and variable i, for

1 ≤ i ≤ n; and

• binary constraint Cn+1,n+2 =

0 0

0 2

 between n+ 1 and n+ 2.

Claim: 〈{s1, . . . , sn}, t〉 is yes-instance of SubsetSum if and only if n+ 1 and n+ 2 sign-interact.

We clearly have that for all x ∈ {0, 1}n+2, f(x[n + 1 7→ 1]) > f(x[n + 1 7→ 0]), so n + 1 does

not sign-depend on n + 2. Thus my claim becomes equivalent to verifying the conditions under

which n + 2 sign-depends on n + 1. Let’s look at the two directions of the if and only if in the

claim:

Case 1 (⇒): If 〈{s1, . . . , sn}, t〉 ∈ SubsetSum, then there is a subset S ⊆ [n] such that∑
i∈S si = t. Let eS ∈ {0, 1}n be the variable assignment such that for any i ∈ S, eS [i] = 1 and

for any j 6∈ S, eS [j] = 0. We have that:

f(eS01) = |S| − 1 f(eS11) = |S|+ 2

f(eS00) = |S| f(eS10) = |S|+ 1

By Equation 3.11, these imply that n+ 2 sign-depends on n+ 1.

Case 2 (⇐): If 〈{s1, . . . , sn}, t〉 6∈ SubsetSum, then for any S ⊆ [n] we either have
∑
i∈S si ≤

t− 1 or
∑
i∈S si ≥ t+ 1. Thus, given an arbitrary assignment eS ∈ {0, 1} we have two subcases:

If
∑
i∈S

si ≤ t− 1 then: Or, if
∑
i∈S

si ≥ t− 1 then:

f(eS01)− f(eS00) ≤ −4 f(eS01)− f(eS00) ≥ 2

f(eS11)− f(eS10) ≤ −2 f(eS11)− f(eS10) ≥ 4

In either subcase, sgn(f(eS01) − f(eS00)) = sgn(f(eS11) − f(eS10)), so by Equation 3.11, n + 2

does not sign-depend on n+ 1.

The above has focused on sign-equivalence for fitness landscapes that are implementable by

binary constraints. But there are fitness landscapes like Example 3.9 and even fitness graphs

that are not implementable by binary VCSPs. In general, to handle such cases, I would need to
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generalize the concept of gene-interaction networks from graphs to hypergraphs where an edge

can be incident on more than two vertices. Such a generalization is relatively straightforward but

beyond the scope of this thesis. However, even in these higher arity cases, the structure of the

trim gene-interaction network can be useful. In particular, if we abandon the idea of assigning a

specific constraint to each edge then the minimal sign-equivalent gene-interaction graph can still

be unambiguously defined (in a way that is useful for Chapter 5) by saying that an edge exists

between loci i and j if there is some genetic background in which i and j have sign epistasis or

reciprocal sign epistasis. In this way, the minimal sign-equivalent gene-interaction graph can still

provide an unambiguous summary of which genes are epistatically linked in a given fitness graph,

even if that fitness graph cannot be implemented by a binary VCSP-instance. Of course, when the

fitness graph cannot be implemented by a binary VCSP then specific constraint matrices cannot

be assigned to the edges of the gene-interaction graph to make it into a network.

3.9 Summary

Fitness landscapes are a central metaphor in evolutionary biology. In Section 3.1, I formalized this

metaphor by defining fitness landscapes as mathematical objects that we can analyze. I divided

these landscapes into three categories (smooth, semismooth, rugged) in Section 3.2 based the

maximum kind of epistasis (none, sign, reciprocal sign) that appears within the landscapes. These

three broad categories will serve as the structure for the coarse hardness results in Chapter 4.

To establish the more refined easy vs hard classification of Chapter 5, I will need to look at the

structure of the gene-interaction networks that I introduced in Section 3.4 as a representation of

fitness landscapes. Thus, this chapters direct impact on this thesis is to set up the tools we will

need to prove the various biologically significant results of Chapters 4 and 5.

But the definitions I set out here are not limited to just what they can do for Chapters 4

and 5. They can be used beyond this thesis. Thankfully, the gene-interaction networks that I

introduced here have a number of nice features, including unique minimal representations. The

minimal magnitude-equivalent representation can be found efficiently (unlike the minimal sign-

equivalent representation) and even used as a way to interpolate whole fitness landscapes from local

measurements (Section 3.7.1). For now, this approach to measuring gene-interaction networks is

in its early stages but I hope to develop it in future work as a practical technique in a similar

way to how I develop the game assay in Chapter 7. This way, we can one day transform fitness

landscapes from being just a theoretical abstraction to also providing an empirical abstraction.



Chapter 4

Formalizing the theory of hard

fitness landscapes

One of the biggest advantages of linking biology to theoretical computer science is the latter’s

insistence on formal definitions, theorems, and mathematical proofs. Although this formalization

process can be slow going at times, I think it is well worth the effort. By focusing on formal math-

ematics, we can add to the study of evolution the new tool-set of algorithmic biology that extends

the techniques of computational biology beyond the more practical data crunching, simulation and

computational metaphors. Here, I will formalize the theory of hard fitness landscapes.

In Chapter 2, I focused on the biological importance, interpretation, and implication of the

theory of hard landscapes. In Chapter 3, I gave definitions for the representation of these fitness

landscapes. In this chapter, I focus on the evolutionary dynamics and provide the formal proof of

the hardness results. In Section 4.1, I discuss the difference between local and global optima. In

the rest of the chapter, I prove the theorems on which the conclusions of Chapter 2 are based. The

rest of the chapter is then structured around the different epistasis-based families of landscapes

defined in Section 3.2:

Smooth fitness landscapes: although highly restricted, these landscapes are the source of a

lot of intuition and early models of fitness landscapes. So, in Section 4.2, I briefly remind us

of some important properties of smooth landscapes.

Semismooth fitness landscapes: these landscapes share many properties in common with

smooth fitness landscapes and I go over these similarities and differences in Section 4.3.

I prove a characterization (Theorem 4.9) that is structured in a similar way to smooth

landscapes. However, computationally, semismooth landscapes, unlike smooth ones, can be

71
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hard. In Section 4.3.1, I use the equivalence of semismooth fitness landscapes and acyclic

unique-sink orientations of hyper-cubes to adapt hardness results from the analysis of sim-

plex algorithms. This provides hard landscapes for random fitter-mutant SSWM dynamics.

In the subsequent section, I show how to recursively construct hard fitness landscapes for

fittest-mutant SSWM dynamics from specific start position (Section 4.4) and random start

position (Section 4.4.1). I call this the winding semismooth fitness landscape. Finally, in Sec-

tion 4.5, I show that for any implementation of the winding semismooth fitness landscape as

a generalized NK-model, the resulting gene-interaction network will be “complicated” (have

unbounded treewidth; Corollary 4.23).

Rugged fitness landscapes: these fitness landscapes can – unlike the previous two – have

many peaks. And I study them via the classic and generalized NK models (for a reminder of

definitions, see Sections 3.3 and 3.4). To analyze these models of landscapes, in Section 4.6,

I review the complexity class PLS, show that both the classic NK-model for K ≥ 2 and

generalized NK-model for K ≥ 1 are PLS-complete (Theorem 4.25) and discuss the generality

of the results. In Section 4.7, I discuss the hardness of s-approximate peaks (Definition 4.28)

and nearly-neutral networks. Finally in Section 4.8, I provide an intuition for why the

assumption of simple distributions of fitness landscapes in prior work might have made the

existence of hard families more difficult to spot earlier. But I save a full discussion of easy

instances of fitness landscapes for Chapter 5.

Throughout the chapter, I argue that local fitness optima may not be reachable in a reason-

able amount of time – even when allowing progressively more general and abstract evolutionary

dynamics. For this generality, we pay with increasing complication in the corresponding fitness

landscapes. This progression of results is summarized in Table 4.1 (which also serves as a guide for

navigating the chapter). If we restrict our evolutionary dynamics to random fitter-mutant SSWM

or fittest-mutant SSWM, then just sign epistasis is sufficient to ensure the existence of hard land-

scapes. If we allow any adaptive evolutionary dynamics, then reciprocal sign epistasis in the classic

NK model with K ≥ 2 or generalized NK model with K ≥ 1 is sufficient for hard landscapes. If

we want to show that arbitrary evolutionary dynamics cannot find local fitness optima, then we

need K ≥ 2 and the standard conjecture from computational complexity that FP 6= PLS.
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Landscape Max epistasis Hardness of reaching local optima Proved in...

smooth magnitude (↑) Easy for all strong-selection weak-mutation
(SSWM) dynamics

Section 4.2

semismooth sign (↑- ,↑-) Hard for SSWM with random fitter-mutant
or fittest-mutant dynamics

Theorems 4.10,
4.16, & 4.20

rugged reciprocal sign (|--) Hard for all SSWM dynamics: initial genotypes
with all adaptive paths of exponential length

Corollary 4.26

Hard for all evolutionary dynamics (if FP 6= PLS) Theorem 4.25
Easy for finding approximate local peaks with
moderate optimality gap: selection coefficients can
drop-off as power law

Theorem 4.30

Hard for approximate local peaks with small op-
timality gap: selection coefficient cannot drop-off
exponentially

Theorem 4.32
Corollary 4.33

Table 4.1: Summary of main results of Chapter 4. Each landscape type (column 1) is
characterized by the most complicated permitted type of epistasis (column 2; see 3.2). Based
on this, there are families of this landscape type that are easy or hard under progressively more
general dynamics (column 3), which is proved in the corresponding part of the chapter (column 4).

4.1 Local vs global fitness peaks

For the majority of this chapter – with the exception of Section 4.7 – the exact fitness values or

their physical interpretations do not matter; only the rank-ordering of fitness and the structure of

adaptive paths matters (see Definition 3.1 and Section 3.8).

In general, adaptive paths can continue until they reach a local fitness optimum:

Definition 4.1. A genotype u is a local fitness optimum (sometimes also called a (local) fitness

peak) if for all adjacent genotypes v, we have f(v) ≤ f(u).

Note the above definition of a genotype as a local fitness optimum allows for adjacent genotypes

of equal (or lesser) fitness. In particular, this means that points within a fitness plateau can be local

fitness optima. At times, I will assume for simplicity that no two adjacent genotypes have exactly

the same fitness to avoid considering fitness plateaus; but this is not an important restriction and

all the hardness results can be reproved without it. A local fitness optimum is a global fitness

optimum if all other genotypes in the whole of the genetic space (not just neighbours) have the

same or lower fitness (i.e., if no other local fitness optimum in the whole of the genetic space has

a higher fitness).

4.2 Smooth fitness landscapes

As I discussed in Section 3.2.1, if a fitness landscape has no sign epistasis then it is a smooth

landscape and has a single peak x∗ [228, 39]. Every shortest path from an arbitrary x to x∗ in the
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mutation-graph is an adaptive path – a flow in the fitness graph – and every adaptive path in the

fitness graph is a shortest path in the mutation graph [39]. Thus, evolution can quickly find the

global optimum in a smooth fitness landscape, with an adaptive path taking at most n steps: that

is, all smooth fitness landscapes are easy landscapes. For an example, see the smooth Escherichia

coli β-lactamase fitness landscape measured by Chou et al. [30] shown in Figure 3.3a.

Proposition 4.2 ([228, 39]). If there is no sign epistasis in a fitness landscape, then it is called a

smooth landscape and has a single peak x∗. Every shortest path (ignoring edge directions) from an

arbitrary genotype x to x∗ is an adaptive path, and every adaptive path from x to x∗ is a shortest

path (ignoring edge directions).

Where by ‘shortest path (ignoring edge directions)’, I mean any shortest path in the mutation-

graph, irrespective of if the fitness along the edges of that path increases (‘up arrow’) or decreases

(‘down arrow’). In other words, an arbitrary shortest path between x and x∗ corresponds to an

arbitrary swapping of genes at the loci on which x and x∗ from the value they have in x to the

value in x∗. This means, for example, that if x and x∗ differ on d loci then there are d! many

shortest paths between them and by Proposition 4.2 those are also the d! adaptive paths between

them.

4.3 Semismooth fitness landscapes

Since a smooth landscape is always easy, let’s introduce the minimal amount of epistasis: sign

epistasis, without any reciprocal sign epistasis.

Definition 4.3. A semismooth fitness landscape on {0, 1}n with fitness function f is a fitness

landscape that has no reciprocal sign epistasis. Such a fitness function f is also called semismooth.

For some of the following proofs, it will be useful to define sublandscapes.

Definition 4.4. Given a landscape on n bits, a sublandscape spanned by S ⊆ [n] is a landscape

on {0, 1}S where the alleles at the loci (indices) in S can vary but the indices in [n]− S are fixed

according to some string u ∈ {0, 1}[n]−S .

Note that the whole landscape is a sublandscape of itself (taking S = [n]). For any S ⊂ [n],

there are 2n−|S| many sublandscapes on S corresponding to the possible u ∈ {0, 1}[n]−S . Reciprocal

sign epistasis between bits i and j corresponds to a sublandscape on {i, j} that has two distinct

peaks.
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Now, I can note a couple of important properties of semismooth landscapes. The first important

property of semismooth landscapes is a slightly more general statement of Poelwijk et al. [179]’s

theorem about the necessity of reciprocal sign epistasis.

Theorem 4.5. A fitness landscape on {0, 1}n has some sublandscape with more than one distinct

peak if and only if it has reciprocal sign epistasis.

The proof will show that a minimal multi-peak sublandscape must have size 2. I will do this by

considering longest walks in a sublandscape. This proof technique is distinct from Poelwijk et al.

[179].

Proof. (⇐): This direction is obvious because the two loci reciprocal sign epistasis fitness subgraph

has two peaks (see 3.1c and Section 3.2). The real work is in the other direction.

(⇒): Let’s consider a minimal sublandscape L that has more than one distinct peak: that

means that if this sublandscape is spanned by S (i.e., {0, 1}S) then no sublandscape spanned by

T ⊂ S has multiple peaks.

Since L is minimal, its peaks must differ from each other on each bit in S, for if there was a bit

i ∈ S on which two peaks agreed then that bit could be fixed to that value and eliminated from S

to make a smaller sublandscape spanned by S−{i} with two peaks. Thus, the minimal multipeak

sublandscape has precisely two peaks. Call these peaks x∗ and y∗.

Claim: In a minimal multipeak sublandscape, from each non-peak vertex, there must be a

path to each peak.

Let’s prove the claim by contradiction: Consider an arbitrary non-peak vertex x, and suppose

it has no path to the x∗ peak. Since any path from x in L must terminate at some peak, take the

longest path from x to the peak y∗ that it reaches, and let y be the last step in that path before

the peak. Notice that y must only have one beneficial mutation (on bit i), the one to the peak.

For if it had more than one beneficial mutation, it could take the non-peak step to y′ and then

proceed from y′ to y∗ (x∗ is not an option by assumption, and there are only two peaks in L) and

thus provide a longer path to the peak. Now consider the landscape on S − {i}, with the ith bit

fixed to yi. Since yi is the same as x∗i (both are opposite of y∗i ), x∗ is still a peak over S−{i}, but

so is y (since it’s only beneficial mutation was eliminated by fixing i to yi). But this contradicts

minimality, so no such x exists.

Now that we know that we can reach each peak from any vertex x, let us again consider the

longest path from x to y∗ with y as the last step in that path before the peak, and i as the position

of the last beneficial mutation. Since all non-peak vertices must reach both peaks, there must be

some other beneficial mutation j from y to x′ that eventually leads to x∗. But if x′ is not a peak
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then it must also have a way to reach y∗, but then we could make a longer path, contradicting the

construction of y. Thus x′ must be the peak x∗.

This means that x∗ and y∗ differ in only the two bits i and j. But in a minimal multipeaked

sublandscape they must differ in all bits, so S = {i, j} (i.e., this sublandscape is an example of

reciprocal sign epistasis).

Corollary 4.6. A fitness landscape without reciprocal sign epistasis has a unique single peak.

Proof. This follows from the contrapositive of Theorem 4.5, since the whole landscape is a sub-

landscape of itself.

The above results can also be restated in the terminology used to analyze simplex algo-

rithms.[208, 144]

Definition 4.7. A directed acyclic orientation of a hypercube {0, 1}n is called an acyclic unique

sink orientation (AUSO) if every subcube (face; including the whole cube) has a unique sink.

This makes the contrapositive of Theorem 4.5 into the following proposition:

Proposition 4.8. A semismooth fitness graph is an AUSO

Now, if we let x⊕ y mean XOR between x and y and let ||z||1 mean the number of 1s in z then

we can state the main theorem about semismooth fitness landscapes:

Theorem 4.9. A semismooth fitness landscape has a unique fitness peak x∗ and for any vertex x

in the landscape, there exists a path of length ||x∗⊕x||1 (Hamming distance to peak) from x to the

peak.

Proof. The unique peak x∗ is just a restatement of Corollary 4.6. To show that there is always a

path of Hamming distance to the peak (i.e., ||x∗⊕ x||1 – a length equal to the number of bits that

x∗ and x differ on), I will show that given an arbitrary x, we can always pick a mutation k that

decreases the Hamming distance to x∗ by 1.

Let S be the set of indices that x and x∗ disagree on, |S| = ||x∗ ⊕ x||1. Consider the sub-

landscape on S with the other bits fixed to what x and x∗ agree on. In this sublandscape x∗ is a

peak, thus by Theorem 4.5 x isn’t a peak and must have some beneficial mutation k ∈ S. This is

the k we were looking for.

Note that this proof specifies an algorithm for constructing a short adaptive walk to the fitness

peak x∗. However, this algorithm requires knowing x∗ ahead of time (i.e., seeing the peak in the

distance). But evolution does not know ahead of time where peaks are, and so cannot carry out
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this algorithm. Even though a short path to the peak always exists, evolutionary dynamics might

not follow it.

The equivalence between semismooth fitness landscapes and AUSOs allows us to prove – in

certain cases – that finding these short paths to the peak is difficult. In the computer science

literature, it is believed that AUSOs are computationally difficult to solve (see, Fearnley et al. [48]

for a formal treatment in the case of the closely related USOs). In the literature on the analysis of

simplex algorithms, it is believed that for almost any pivot rule there will exist AUSO where that

pivot rule will take a long time to find the peak and explicit constructions of AUSOs are known

for the intractability of specific pivot rules [123, 85, 65, 3, 208, 193, 144]. These constructions can

be reinterpreted in biological terminology to give us hard semismooth fitness landscapes, as I do

below.

4.3.1 Hard semismooth landscape for random fitter-mutant SSWM

The simplest evolutionary rule to consider is picking a mutation uniformly at random among ones

that increase fitness. This can be restated as picking and following one of the out-edges in the

fitness graph at random (i.e., this is equivalent to the random-edge simplex pivot rule [144]).

Proposition 4.8 allows me to use the hard AUSOs constructed by Matousek and Szabo [144] as a

family of hard semismooth landscapes.

Theorem 4.10 (Matousek and Szabo [144]’s Theorem 1 in biological terminology). There exist

semismooth fitness landscapes on {0, 1}n such that random fitter-mutant SSWM dynamics starting

from a random vertex, with probability at least 1 − e−Ω(n1/3) follows an adaptive path of at least

eΩ(n1/3) steps to evolutionary equilibrium.

Proof. Theorem 1 by Matousek and Szabo [144] states that:

There are positive constants c, c1 such that for all sufficiently large n there exists an

acyclic unique-sink orientation (AUSO) of the n-dimensional cube [0, 1]n such that the

algorithm RANDOM EDGE, started at a randomly chosen vertex, with probability at

least 1− e−c1n1/3

makes at least ecn
1/3

steps before reaching the sink.

This translates to the biological statement of Theorem 4.10 by noting that AUSOs are semismooth

fitness landscapes (Proposition 4.8) and that RANDOM EDGE is the same algorithm as random

fitter-mutant SSWM dynamics.

In other words, multiple peaks – or even reciprocal sign-epistasis – are not required to make

a complex fitness landscape. In fact, AUSOs were developed to capture the idea of a linear
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function on a polytope (although AUSOs are a slightly bigger class). It is not surprising to find

the simplex algorithm in the context of semismooth landscapes, since we can regard it as a local

search algorithm for linear programming (where local optimality coincides with global optimality).

Linear fitness functions are usually considered to be some of the simplest landscapes by theoretical

biologists; showing that adaptation is hard on these landscapes (or ones like them) is a surprising

result. One of the advantages of formally connecting evolutionary biology to theoretical computer

science and combinatorial optimization is that we can get these sort of surprising results “straight

out of the box”, as I did above by translating the theorem of Matousek and Szabo [144] into

biological terminology.

4.4 Winding landscape: Recursive construction of hard semi-

smooth landscape for fittest-mutant SSWM

One might object to taking random fitter mutants because sometimes the selected mutations are

only marginally fitter than the wildtype. It might seem natural to speed-up evolution by always

selecting the fittest possible mutant. Here I show that, in general, this does not help.

Consider a fitness landscape on {0, 1}m with semismooth fitness function f that, if started at

0m, will take k steps to reach its evolutionary equilibrium at x∗. I will show how to grow this into

a fitness landscape on {0, 1}m+2 with semismooth fitness function f ′ that if started at 0m+2 will

take 2(k + 1) steps to reach its evolutionary equilibrium at 0m11.

For simplicity of analysis, let us define the following functions and variables for all points in

{0, 1}m that are not an evolutionary equilibrium under f (i.e., all except x∗). Let

s+(x) = max
y∈N(x) s.t. f(y)>f(x)

f(y)− f(x) (4.1)

s−(x) = min
y∈N(x) s.t. f(x)+s+(x)>f(y)>f(x)

f(y)− f(x). (4.2)

where N(x) are the neighbours of x in the mutation graphs (i.e., genotypes that differ from x in

one bit).

Now overload these into constants, as follows: define s+ = minx s
+(x) and s− = minx s

−(x).

Suppose that f is such that s− < s+; otherwise set s− = s+/2 (do this also, if N(x) s.t. f(x) +

s+(x) > f(y) > f(x) is empty for some non-equilibrium x).

Let x⊕ y mean the XOR between x and y. Consider the ‘reflected’ function f(x⊕ x∗). I call
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this function reflected because we could visualize f(x ⊕ x∗) as the same function as f(x), except

it is mirrored (swapping the fitness effects of the 0 and 1 allele) along each locus i where x∗i = 1.

Note that if f(x) is semismooth then so is f(x ⊕ x∗), since it just relabels the directions of some

dimensions. The reflected function preserves all the important structure. In particular, if under

f(x) it took k steps to go from 0m to x∗ then under f(x⊕ x∗) it will take k steps to from from x∗

to 0m.

Definition 4.11. Given a fitness landscape f : {0, 1}m → R, its wind-up f ′ : {0, 1}m+2 → R is:

f ′(xab) =



f(x) if a = b = 0

f(x) + s− if a 6= b and x 6= x∗

f(x∗) + s− if a = 0, b = 1 and x = x∗

f(x∗) + s+ if a = 1, b = 0 and x = x∗

f(x⊕ x∗) + f(x∗) + 2s+ if a = b = 1

(4.3)

Basically the x00 subcube is the original landscape, the x10 and x01 subcubes serve as ‘buffers’

to make sure that the walk doesn’t leave the first subcube before reaching x∗00, and the x11 is

the original landscape reflected around x∗ that takes us from x∗11 to 0m11.

Notice, that f ′ has the same s+ and s− as f .

Now we just need to establish some properties:

Proposition 4.12. Fittest-mutant SSWM dynamics will not leave the {0, 1}m00 subcube until

reaching x∗00.

Proof. By definition, the fittest mutant (i.e., neighbour over {0, 1}m) from each genotype x ∈

{0, 1}m that isn’t x∗ in f , has a fitness advantage of s+ or higher. Hence adding two extra edges

from x00 to x10 and x01, each with fitness advantage s− < s+ will not change the edge that

fittest-mutant SSWM picks.

Proposition 4.13. SSWM dynamics will not leave the {0, 1}m11 subcube after entering it.

Proof. This is because f ′ has strictly greater fitness on the {0, 1}m11 subcube than on the other

three subcubes. Confirming this, note that for every x ∈ {0, 1}m:
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f(x⊕ x∗) + f(x∗) + 2s+ ≥ f(x∗) + 2s+ since f is non-negative (4.4)

≥ f(x∗) + s+ since s+ > 0 (4.5)

≥ f(x∗) + s− since s+ > s− (4.6)

≥ f(x) + s− since x∗ is fitness peak of f (4.7)

≥ f(x) since s− > 0 (4.8)

Proposition 4.14. If f on {0, 1}m has no reciprocal sign-epistasis then (since s− > 0) f ′ on

{0, 1}m+2 has no reciprocal sign-epistasis.

Proof. Consider any pair of genes i, j ∈ [m]. Among these first m genes, depending the last two

bits, we are looking at landscapes on {0, 1}m00, {0, 1}m01, {0, 1}m10, or {0, 1}m11, with the fitness

given by f(x),f(x) + s−,f(x) + s−, or f(x⊕x∗) + f(x∗) + 2s+ (respectively). All these landscapes

have isomorphic combinatorial structure to f and thus the same kinds of epistasis. Since f has no

reciprocal sign-epistasis, all these subcubes lack it, too.

Now, let’s look at the case of where the gene pair goes outside the first m genes. Consider an

arbitrary gene i ∈ [m], let u ∈ {0, 1}i−1, v ∈ {0, 1}m−i be arbitrary. Label a,A ∈ {0, 1} such that

f(uav) < f(uAv) and look at the subcube u{0, 1}v{0, 1}2:

a00

A00

a10

A10

A01

a01 a11

A11

The solid black edges have their directions from the definition of a and A. The red edges

have their direction because s+ > s− > 0. The green edges have their direction because of

Proposition 4.13. The direction of the dotted black edge will depend on if x∗ contains 0 (point

up) or 1 (point down) at position i, but regardless of the direction, no reciprocal sign epistasis is

introduced.
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Corollary 4.15. Given f ′ on {0, 1}m+2, the fittest-mutant SSWM dynamics starting at 0m+2 will

take 2(k + 1) steps to reach its unique fitness peak at 0m11.

Proof. By Proposition 4.12, the walk will first proceed to x∗00 taking k steps. From x∗00, there

are only two adaptive mutations x∗10 or x∗01, and the first is fitter. From x∗10 there is only a

single adaptive mutation (to x∗11), taking us to k + 2 steps. From x∗11, by Proposition 4.13, it

will take us k more steps to reach 0m11; totaling 2(k + 1) steps.

Theorem 4.16. There exist semismooth fitness landscapes on 2n loci that take 2n+1 − 2 fittest

mutant steps to reach their unique fitness peak at 02(n−1)11 when starting from 02n.

Proof. We will build the family of landscapes inductively using our construction, starting from an

initial landscape:

f1(00) = 2

f1(10) = 4 f1(01) = 3

f1(11) = 6

The resulting path length Tn will be given by the recurrence equation: Tn+1 = 2Tn+2 with T1 = 2.

This recurrence is solved by Tn = 2n+1 − 2.

Call the landscapes constructed as in the above proof, winding landscapes. A visual example

of the winding landscape construction on 6 loci (n = 3 in Theorem 4.16) is given in Figure 2.1.

The winding landscapes construction is similar to Horn, Goldberg, and Deb [79]’s Root2path con-

struction, except their approach introduced reciprocal sign epistasis despite having a single peak.

In fact, we can generate instances of the Root2path landscapes by setting s− < 0 in the winding

induction stem from Equation 4.3. This will, of course, make Proposition 4.14 false by introducing

reciprocal sign-epistasis, but the other proofs in this section would still be valid and thus establish

an exponential steepest ascent.

Of course, the landscape in the proof of Theorem 4.16 is an arbitrary initial fitness landscape and

any semismooth landscape can be used as a starting point; the walk would still scale exponentially,
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but there would be a different initial condition. Further, the winding product construction I showed

above is just one example for building families. Many more could be considered.

In particular, if we are interested in larger mutation operators like k-point mutations instead

of just 1-point mutations then it is relatively straightforward to modify the winding landscape

construction. As written, Equation 4.3 uses a buffer of 2 bits in f ′(xab) to transition from f(x)

to its reflection f(x ⊕ x∗). In the more general setting, we’d pad the buffer to be k + 1 bits:

define f ′(xy) where |y| = k + 1 with a smooth landscape on the y portion of the input taking us

from f(x) to its reflection. Which leaves most of the above arguments unchanged, only modifying

Theorem 4.16 to have the landscape to be on kn loci and the recurrence relation at the end of the

proof to be Tn+1 = 2Tn + k + 1.

4.4.1 Hard landscapes from random start

Unfortunately, one might not be impressed by a result that requires starting from a specific geno-

type like 0m and ask instead for the expected length of the walk starting from a random vertex.

Of course, if a genotype on this long walk is chosen as a starting point then the walk will still be

long in most cases. However, there are only 2n+1−2 vertices in the walk, among 22n vertices total,

so the probability of landing on the walk is exponentially small. Instead, I will rely on direct sums

of landscapes and Proposition 4.12 to get long expected walks.

Proposition 4.17. With probability 1/4, a winding landscape on 2n loci will take 2n or more fittest

mutant steps to reach the fitness peak from a starting genotype sampled uniformly at random.

Proof. With probability 1/4, the randomly sampled starting vertex has the form x00 (i.e., its last

two bits are 0s). By Proposition 4.12, the walk can’t leave the {0, 1}2(n−1)00 landscape until

reaching its peak at 02(n−2)1100. This might happen quickly, or it might even already be at that

peak. But after, it has to follow the two steps to 02(n−2)1111 and then due to Proposition 4.13 it

will have to follow the normal long path, taking 2n − 2 more steps.

Because of the constant probability of an exponentially long walk, we can get a big lower bound

on the expected walk time:

Corollary 4.18. Fittest-mutant SSWM dynamics starting from an initial genotype chosen uni-

formly at random will have an expected walk length greater than 2n−2 on a 2n-loci winding land-

scape.

Proof. With probability 1/4, the walk takes 2n or more steps, and with probability 3/4 it takes 0

or more steps. Thus the expected walk length is greater than or equal to (1/4) ∗ 2n + (3/4) ∗ 0 =
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2n−2.

However, 75% of the time, we can’t make a guarantee of long dynamics. We can overcome this

limitation by taking direct sums of landscapes.

Definition 4.19. Given two fitness landscapes, one with fitness f1 on {0, 1}n1 and the other with

fitness f2 on {0, 1}n2 , the direct sum (f1 ⊕ f2) is a landscape with fitness f on {0, 1}n1+n2 where

f(xy) = f1(x) + f2(y) for x ∈ {0, 1}n1 and y ∈ {0, 1}n2 .

Now, for any probability of failure 0 < δ < 1, let mδ = d log 1
δ

2−log 3e (where log is base 2), note

that mδ is linear in log 1
δ .

Theorem 4.20. There exist semismooth fitness landscapes on 2nmδ loci that with probability 1−δ,

will take 2n or more fittest mutant steps to reach their fitness peak from a starting genotype sampled

uniformly at random.

Proof. Consider a landscape that is the direct sum ofmδ separate 2n-loci winding landscapes. Since

each constituent is semismooth and since sums don’t introduce epistasis, the resulting ‘tensor sum’

landscape is also semismooth. Further, to reach its single peak, the walk has to reach the peak of

each of the mδ independent winding sublandscapes. But as long as at least one sublandscape has

a long walk, we are happy. By Proposition 4.17, we know that for each sublandscape, we will have

a short-walk starting genotype with probability at most 3/4. The probability that none of them

get a long walk then is at most (3/4)mδ ≤ δ.

4.5 Lower bound on the gene interaction network of the

winding landscape

It is important to note that the winding fitness landscape is not implemented above by a generalized

NK-model (as discussed in Section 3.4) but is defined recursively. However, I use this section to

prove that if the winding fitness landscape (and also Horn, Goldberg, and Deb [79]’s Root2path) was

implemented by a gene-interaction network, then that network would need to be very complicated

and have a lot of edges. The winding fitness landscape has the dramatic property of having drastic

changes in the direction and magnitude of the gradient of the objective function between points

which are very close to each other. This is what I will use for the proof. Consider the sub-cube

spanned by the first 2(k+ 1)-variables. The sub-cube fitness maximum is at x∗k = 02k11. If s− > 0

(as in Section 4.4) then the sub-cube fitness minimum is only Hamming-distance 2 away at 02(k+1):
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so the flows (i.e., differences in the objective function from the current point to its neighbouring

points) change from all positive to all negative in just 2 steps. From this we can prove that the

total scope size of any constraint graph implementing this fitness landscape must be high. The case

in which we do not necessarily have s− > 0 (as in Horn, Goldberg, and Deb [79]) is slightly more

complicated since 02(k+1) is no longer a fitness minimum and mostly has negative flows. However,

these negative flows have small magnitude compared to the very large magnitude negative flows

at x∗k, so a similar argument can be used. I formalise this argument below.

For convenience, let ||x||0 be the number of non-zero entries in x – also known as the Hamming

weight or the zero-‘norm’ of the vector x. As before, I will use x[i→ b] to mean a bit-string that is

the same as x at every bit, except the i-th bit is set to b. Or, in symbols: ∀j 6= i [x[i→ b]]j = [x]j

and [x[i → b]]i = b. This allows us to define the gradient ∇f or flow of a fitness function f

entry-wise as [∇f(x)]i = f(x[i→ 1])− f(x[i→ 0]) to state the degree lower-bound lemma:

Lemma 4.21. Given a fitness function f implemented by a VCSP with constraint graph G and

any two distinct variable assignments x and y that differ on a set of variables S, we have that

the total degree dG(S) =
∑
i∈S dG(i) of S in G is lower-bounded by the change in flow: dG(S) ≥

||∇fx−∇fy||0.

Proof. If we look at a variable at position i and compare ∇f(x[i→ 1]) to ∇f(x[i→ 0]) then any

differences in the gradient must have been due solely to the change in variable xi. Thus, given any

position j such that [∇f(x[i → 1])]j 6= [∇f(x[i → 0])]j there must be a constraint that has both

i and j (and maybe others) in its scope. Thus, by looking at the number of non-zero entries in

∇f(x[i→ 1])−∇f(x[i→ 0]), we get a lower bound on the number of other variables with which

each variable i co-occurs in a constraint.

This reasoning can be extended over paths between non-adjacent states. Suppose we have two

states x1 and xt at Hamming distance t from each other. Let x1x2...xt−1xk be any shortest path

between them with the bits flipped at each step given by i1, i2, ...it−1. Notice the following:

||∇fx1 −∇fxk||0 = ||(∇fx1 −∇fx2) + (∇fx2 −∇fx3)+

· · ·+ (∇fxt−1 −∇fxt)||0 (4.9)

≤ ||∇fx1 −∇fx2||0 + ||∇fx2 −∇fx3||0+

· · ·+ ||∇fxt−1 −∇fxt)||0 (4.10)

In words: given two states x1 and xk that differ at a set of variables S, the total number of variables
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that the variables in S co-occur with is lower-bounded by ||∇fx1 −∇fxk||0.

Now, I can apply this lower bound technique to the winding fitness landscape.

Proposition 4.22. If the winding fitness landscape f on 2n variables from Section 4.4 is imple-

mented by a VCSP with constraint graph G then dG(2k+ 1) + dG(2k+ 2) ≥ k for each 0 ≤ k < n.

Proof. Let us look at the gradients at the path’s starting point:

∇f(02n) = [s+, s−, . . . , s−, s−] (4.11)

and for each 1 ≤ k ≤ n, look at the gradients at subcube peaks ∇f(02(k−1)(11)02(n−k)): they

have a slightly more complicated form, so we define them point-wise for i ∈ [1, n], b ∈ {0, 1}, and

x = 02(k−1)(11)02(n−k):

[∇f(x)]2i−b =



−s+ + b(s− − s+) if i < k

fk(x∗k)− s− if i = k

s+ if i = k + 1 & b = 1

s− if i > k + b

(4.12)

Looking at the odd entries lower than 2k (i.e., i < k, b = 1 in Equation 4.12), we have:

[∇f(02(k−1)(11)02(n−k))−∇f(02n)]2i−1 = −2s+
i 6= 0. (4.13)

Thus, by Equation 4.10, the variables at positions 2k + 1 and 2k + 2 together have degree of at

least k.

Corollary 4.23. Any VCSP implementing the winding fitness landscape from Section 4.4 must

have a constraint graph that is dense and with unbounded treewidth.

Proof. Summing up over all 1 ≤ k ≤ n, we get that any VCSP instance that implements f must

have total degree of at least (n− 1)n/2 (i.e., quadratic in the number 2n of variables).

In particular, this means that a constraint graph of bounded treewidth (which would have total

degree linear in 2n) cannot implement the winding fitness landscape f .

It is important to note that although I expect some parts of the above argument (especially

Lemma 4.21) to be useful more generally, the final result (Proposition 4.22 and Corollary 4.23)
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applies only to the semismooth winding landscape construction from Section 4.4 and Horn, Gold-

berg, and Deb [79]’s root2path. Hence, my results do not establish that every family of fitness

landscapes that is hard for fittest-mutant SSWM dynamics must have complex gene-interaction

networks. In fact, recently Cohen, Cooper, Kaznatcheev, and Wallace [32] provided a construc-

tion of gene-interaction networks of treewidth 7 that produce fitness landscapes that are hard

for fittest-mutant SSWM dynamics. But this construction has reciprocal sign epistasis, so it re-

mains an open question whether a hard semismooth landscape can be constructed with a bounded

treewidth gene-interaction network.

4.6 Classic NK model with K ≥ 2 is PLS-complete

The hardness results for semismooth fitness landscapes in the previous section are only for the

particular algorithms of random fitter- and fittest-mutant SSWM dynamics. These are useful

for developing our intuition about hard landscapes, but are not the limit of what theoretical

computer science can offer. The biggest offering from computer science is the ability to abstract

over any evolutionary dynamic, not just two particular ones. This is done through the study of

computational complexity.

For this, it is useful to look at compact representations of rugged fitness landscapes like the

classic and generalized NK model that I described in Chapter 3. Weinberger [227] showed that

checking if the global optimum in a classic NK model is greater than some input value V is

NP -complete for K ≥ 3. Although this implies that finding a global optimum is difficult, it says

nothing about local optima. As such, it has generated little interest among biologists, although it

spurred interest as a model in the evolutionary algorithms literature, leading to a refined proof of

NP -completeness for K ≥ 2 in the classic NK model [233].

To understand the difficulty of finding items with some local property like being an equilibrium,

Johnson, Papadimitrio & Yannakakis [86] defined the complexity class of polynomial local search

(PLS). A problem is in PLS if the problem statement can be specified by three polynomial time

algorithms [189]:

1. An algorithm I that accepts an instance (like a description of a fitness landscape) and outputs

a first candidate to consider (the initial genotype).

2. An algorithm F that accepts an instance and a candidate and returns a objective function

value (i.e., computes the fitness).

3. An algorithm M that accepts an instance and a candidate and returns an output with a
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strictly higher objective function value, or says that the candidate is a local maximum.

We consider a PLS problem solved if an algorithm can output a locally optimal solution for

every instance. This algorithm does not necessarily have to use I, F , or M or follow adaptive

paths. For instance, it can try to uncover hidden structure from the description of the landscape.

A classical example would be the ellipsoid method for linear programming. The hardest problems

in PLS – the ones for which a polynomial time solution could be converted to a solution for any

other PLS problem – are called PLS-complete. It is believed that PLS-complete problems are not

solvable in polynomial time (i.e., FP 6= PLS; where FP stands for the set of function problems

solvable in polynomial time), but – much like the famous P 6= NP question – this conjecture remains

open. Note that finding local optima on fitness landscapes is an example of a PLS problem, where

I is your method for choosing the initial genotype, F is the fitness function, and M computes an

individual adaptive step.

Definition 4.24 (Weighted 2SAT). Consider n variables x = x1...xn ∈ {0, 1}n and m clauses

C1, ..., Cm and associated positive integer weights c1, ...cm. Each clause Ck contains two literals (a

literal is a variable xi or its negation xi), and contributes ck to the fitness if at least one of the

literals is satisfied, and nothing if neither literal is satisfied. The total fitness c(x) is the sum of

the individual contributions of the m clauses. Two assignments x and x′ are adjacent if there is

exactly one index i such that xi 6= x′i. We want to maximize fitness.

The Weighted 2SAT problem is PLS-complete [191]. Since the weighted 2SAT problem is a kind

of VCSP (and, as I defined in Section 3.4, the generalized NK model is just the VCSP instances)

this also means that the geralized NK-model of Section 3.4 for K ≥ 1 is PLS-complete. To show

that the classic NK-model of Section 3.3 is also PLS-complete, I will show how to reduce any

instance of Weighted 2SAT to an instance of the classic NK-model.

Theorem 4.25. Finding a local optimum in the classic NK fitness landscape with K ≥ 2 or the

generalized NK model with K ≥ 1 is PLS-complete.

Note that this is the tightest result possible, since for K = 0 both the classic and generalized

NK-models are smooth, and for K = 1 the classic NK-model is solvable in polynomial time by

dynamic programming [233].

The only complication in proving the above theorem is in dealing with the one-gene-one-function

assumption built into the classic NK model. But this can be done by representing 2SAT instances

via their incidence graph and assigning a gene and corresponding fitness component to handle each

vertex of that incidence graph.
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Proof. Consider an instance of Weighted 2SAT with variables x1, ..., xn, clauses C1, ..., Cm and

positive integer weights c1, ..., cm. We will build a landscape on m+ n loci, with the first m genes

labeled b1, ..., bm and the next n genes labeled x1, ..., xn. Each bk will correspond to a clause Ck

that uses the variables xi and xj (i.e., the first literal is either xi or xi and the second is xj or xj ;

set i < j to avoid ambiguity). Define the corresponding fitness effect of the gene as:

fk(0xixj) =


ck if Ck is satisfied

0 otherwise

(4.14)

fk(1xixj) = fk(0xixj) + 1 (4.15)

Link the xi arbitrarily (say to x(i mod n)+1 and x(i+1 mod n)+1, or to nothing at all) with a

fitness effect of zero, regardless of the values.

In any local maximum bx, we have b = 11..1 and f(x) = m + c(x). On the subcube with

b = 11...1, the Weighted 2SAT instance and this classic NK model instance have the same exact

fitness graph structure, and so there is a bijection between their adaptive paths and local maxima.

Finally, for the generalized NK model with K ≥ 1 there is nothing needed to show since every

instance of weighted 2SAT is an instance of the generalized NK model with K = 1.

Assuming – as most computer scientists do – that there exists some problem in PLS not

solvable in polynomial time (i.e., FP 6= PLS) or even bounded-error randomized polynomial time

(i.e., FBPP 6= PLS), then Theorem 4.25 implies that no matter what mechanistic rule evolution

follows (even ones we have not discovered, yet), be it as simple as SSWM or as complicated as any

polynomial time algorithm, there will be NK landscapes with K = 2 such that evolution will not

be able to find a fitness peak efficiently. But if we focus only on rules that follow adaptive paths

then we can strengthen the result:

Corollary 4.26. There is a constant c > 0 such that, for infinitely many n, there are instances

of the classic NK model with K ≥ 2 or generalized NK model with K ≥ 1 on {0, 1}n and initial

genotype v such that any adaptive path from v will have to take at least 2cn steps before finding a

fitness peak.

Proof. If the initial vertex has b = 11...1 then there is a bijection between adaptive paths in the

fitness landscape and any weight-increasing path for optimizing the weighted 2SAT problem. For

the generalized NK-model, weighted 2SAT instances are instances of the generalized model – so the
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identity function is a bijection. Thus, in both cases, Schaffer and Yannakakis [191]’s Theorem 5.15

applies.

This result holds independently of any complexity theoretic assumptions about the relationship

between polynomial-time and PLS. Hence, there are some landscapes and initial genotypes, such

that any rule we use for adaptation that only considers fitter single-gene mutants will take an

exponential number of steps to find the local optimum.

If we turn to larger mutational neighbourhoods than singe-gene mutants then – due to the large

class of possible adaptive dynamics – a variant of Corollary 4.26 will have to be reproved (by, for

example, using a buffer padding argument similar to the end of Section 4.4) but Theorem 4.25 is

unaffected:

Corollary 4.27. For any definition of local equilibrium with respect to a mutation neighbourhood

or genetic distance that contains point-mutations as a subset (i.e., if ∀x {y | ||y−x||1 = 1} ⊆ N(x)),

the classic NK model with K ≥ 2 and generalized NK model with K ≥ 1 is PLS-hard.

Proof. Any mutation operator that is a superset of point-mutations will only decrease the number

of evolutionary equilibria without introducing new ones. Thus, it will only make the task of finding

such an equilibrium (just as, or) more difficult. However, since the algorithms studied by PLS do

not have to use the mutation operator during their execution, changing it does not give them any

more computational resources.

Finally, it is important to see the NK-model as an example model, albeit a simple and natural

one. If we consider more complex models of fitness landscapes – say dynamic fitness landscapes –

it is often the case that there is some parameter or limit that produces the special case of a static

fitness landscape like the NK-model. In particular, static landscapes are often a sub-model of

dynamic fitness landscapes and thus solving dynamic fitness landscapes can only be more difficult

that static ones.

4.7 Approximate peaks & selection coefficient time-series

If we want to consider the notion of being ‘close’ to a peak, or ideas like nearly-neutral networks,

then we need to use the whole numeric structure of the fitness function f and not just the rank-

ordering that was sufficient until this point. Thus, let us consider relaxations of equilibrium, and

being “close” to a peak instead of exactly at one. To measure closeness in fitness, I will treat

f : {0, 1}n → R as a function from genotype to real-valued fitness. I do this to be consistent with

typical approaches to fitness landscapes in the biology literature, but this could have also been



90 CHAPTER 4. FORMALIZING THE THEORY OF HARD FITNESS LANDSCAPES

expressed in terms of the integer-valued fitness of Chapter 3. In fact, I will do this more carefully in

Section 5.1 when I discuss the span arguments that generalize the techniques of this section. The

following definitions and proofs are inspired by the combinatorial optimization results of Orlin,

Punnen, and Schulz [164].

Definition 4.28. A genotype x is at an s-approximate peak if ∀y ∈ N(x) f(y) ≤ (1 + s)f(x).

Equivalently, we can write s = f(y)−f(x)
f(x) to see that s is defined in the same way as selection

coefficient for invader type y against wild type x in population genetics [62].

The question becomes how big does s have to be for evolution to find an s-approximate peak.

But since there is no absolute unit of fitness, we will need to define fmax = maxx f(x) and:

fδ = min
x

min
y∈N(x) s.t. f(y)>f(x)

(f(y)− f(x)) (4.16)

note that fδ is defined similarly to s− from Section 4.3.1.

First, it is important to note that all landscapes where fδ is not small compared to fmax are

easy.

Proposition 4.29. If fmax/fδ ∈ O(nk) for some constant k then an exact peak can be found in a

polynomial in n number of mutations by any adaptive dynamic.

Proof. Since each adaptive step increases fitness by at least fδ then after t adaptive steps, we have

f(xt) ≥ fδt. Combine this with f(xt) ≤ fmax to get that t ≤ fmax/fδ.

So, we need to focus on bigger gaps between fδ and fmax. If the gap is exponential then we

can find an approximate peak for moderate sized s on any landscape.

Theorem 4.30. If log(fmax/fδ) ∈ O(nk) then fittest mutant SSWM dynamics can find a local

s-approximate peak in time polynomial in n and 1
s .

Proof. Let x0 be the initial genotype, if it is an exact peak then we are done. Otherwise, let

x1 be the next adaptive step, by definition of fδ, we have that f(x1) ≥ f(x0) + fδ ≥ fδ. Now,

consider an adaptive path x1...xt that hasn’t encountered an s-approximate peak (i.e., a mutation

was always available such that f(xi+1) > (1 + s)f(xi)). Thus, we have that f(xt) ≤ fmax and that

f(xt) ≥ (1 + s)tf1 ≥ (1 + s)tfδ. Putting these two together:
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(1 + s)tfδ ≤ fmax (4.17)

t ln(1 + s) ≤ ln
fmax

fδ
(4.18)

t ≤ (ln
fmax

fδ
)/ ln(1 + s) ≤ (1 + 1/s) ln

fmax

fδ
(4.19)

Where I used ln(1 + s) ≥ s
1+s in the last step. Combining with the conditions on log fmax/fδ, we

get: t ∈ O(n
k

s ).

But for very small s, finding an approximate peak is as hard as finding an exact peak.

Proposition 4.31. If s ≤ fδ/fmax then any s-approximate peak is a (exact) local peak.

Proof. If an s-approximate peak at x is not an exact peak then there exists a y ∈ N(x) such

that f(y) − f(x) ≥ fδ but f(y) < (1 + s)f(x). Combining this with f(x) ≤ fmax, we get that

s > fδ/fmax.

Thus, it isn’t possible to find an s-approximate peak for very small s on hard fitness landscapes:

Theorem 4.32. If FP 6= PLS and log(fmax/fδ) ∈ O(nk) then (for the classic NK-model with

K ≥ 2 and the generalized NK-model with K ≥ 1) a local s-approximate peak cannot be found in

time polynomial in n and log 1
s .

Proof. If such an algorithm existed then we’d run it with s = fδ/fmax and – by Proposition 4.31 –

the approximate peak it finds would be exact. Further, in this case log 1
s = log(fmax/fδ) ∈ O(nk)

and thus the runtime would be polynomial in n. This is not possible for the NK-model with K ≥ 2

by Theorem 4.25 (unless FP = PLS).

This also means that the selective coefficient of the fittest mutant s(t) = maxy∈N(xt)∪{xt}(f(y)−

f(xt))/f(xt) cannot decay exponentially quickly.

Corollary 4.33. If FP 6= PLS then there are no evolutionary dynamics such that s(t) ≤ e−mt for

all instances of the classic NK-model with K ≥ 2 and the generalized NK-model with K ≤ 1.

Contrast this with the always achievable power-law decrease in s(t) from Theorem 4.30.

4.8 Distributions and random fitness landscapes

Given that randomly sampling landscapes can introduce structure like short paths [215], I suspect

that the structure of this simple sampling led prior research to miss the possibility of exponen-

tially long walks. The independent sampling of fitness components from the same distributions is
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especially apt to realize the conditions of Proposition 4.29 since it makes it unlikely to create an

exponential gap between the smallest positive fitness gap fδ and the maximum achievable fitness

fmax. Future work could provide a more careful analysis of this conjecture.

Although, as I discussed in Section 3.6, there is evidence for simple distributions on small

fitness landscapes (on upto 8 genes; see Franke et al. [50] and Szendro et al. [209]), there is little

to no data on the distribution of large (i.e., on many loci) fitness landscapes in nature. And

given the exponential size of fitness landscapes, it is unlikely that such data could be collected

without assumptions on the generating hypothesis class (for example, as I suggest in Section 3.7.1).

However, if a single sampling distribution is required then it is tempting to turn to Occam’s razor

and consider simpler landscapes as more likely. This can be done by sampling landscapes with

negative log probability proportional to their minimum description length (i.e., according to the

Kolmogorov universal distribution). If landscapes are sampled in this way, then I would expect

all the orders of magnitude for hardness results established herein to hold [130]. However, a close

examination of this is beyond the scope of this thesis and I leave it as an open question for future

work to prove this formally and to contrast the ubiquity of hardness in fitness landscapes sampled

under different theoretical distributions. As outlined above, it would be especially interesting to

analyze the uniform distribution (that is popular in statistical physics) versus the Kolmogorov

universal distribution (that is used in theoretical computer science).

4.9 Summary

In Chapter 2, we saw the deep insights that algorithmic biology can give into evolution. In this

chapter, I formalized these insights. In formalizing the theory of hard fitness landscapes, my aim is

not only to prove that computational complexity is an ultimate constraint on evolution but to also

introduce new methods into theoretical biology. My hope is that both the close analysis of specific

algorithms and the classification of fitness landscapes into broad complexity classes can give us new

lenses through which to see evolution. In Section 4.4, I used techniques from the analysis of simplex

algorithms to formulate hardness results for specific evolutionary algorithms like random fitter- or

fittest-mutant strong-selection weak-mutation dynamics. And in Section 4.6, I used complexity

theoretic reductions to establish that gene-interaction networks can express fitness landscapes that

are hard for any evolutionary dynamic. I expect that techniques like the above can help us engage

with many other puzzles in biology. Since my aim in this chapter was to prove the existence of

hard landscapes, the overall distinction between easy vs hard that I established was coarse. It is

the goal of Chapter 5 to refine our knowledge of this boundary between easy vs hard landscapes.



Chapter 5

Structure of easy vs hard

gene-interaction networks

While formalizing the theory of hard fitness landscapes in Chapter 4, I classified the ‘hardness’

of fitness landscapes according to the coarse epistasis-based criteria defined in Section 3.2. As

highlighted in Table 4.1, this coarse-grained criteria allows for only three classes of fitness land-

scapes (based on their maximum allowed kind of epistasis): smooth (max epistasis: magnitude),

semismooth (max epistasis: sign), and rugged (max epistasis: reciprocal sign). In this chapter, I

will switch to more fine-grained criteria to refine the separation of easy vs hard fitness landscapes.

Instead of classifying fitness landscapes based on a coarse binary distinction (does a certain kind of

epistasis occur or not anywhere in a fitness landscape), I will look at the more fine-grained criteria

of how the various occurrences of epistasis in the landscape interrelate to each other. Formally, I

will base this chapter’s more fine-grained separation criteria on Section 3.4: the structure of the

gene-interaction networks that encode fitness landscapes.

In Chapter 4, I showed that the presence of either sign or reciprocal sign epistasis is enough

to allow for hard landscapes. Thus, according to the coarse-grained three classes, only smooth

landscapes are easy. As gene-interaction networks, these smooth landscapes are sign-equivalent to

VCSP-instances with only unary constraints (or gene-interaction networks with degree zero). But

we would not expect that just a single occurrence of sign epistasis somewhere in the landscape or

a single constraint edge in a gene-interaction network would make the fitness landscape hard. In

this chapter I will formalize this intuition. Here I will establish more fine-grained criteria on what

features of a gene-interaction network will guarantee that the corresponding fitness landscape is

easy.

93
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In theoretical computer science, classifying easy instances is like asking for an upper bound: give

an algorithm that finds a local fitness peak quickly. But this won’t do for evolution: evolution is an

algorithm, but it is not any algorithm, nor is it one specific algorithm. Since algorithmic biology

aims to reason about large classes of potential evolutionary dynamics in order to abstract over

multiple realizabilities via unknown microdynamical details and population structure, I want to

focus this chapter on a reasonably broad class of algorithms. In particular, the smooth landscapes

of Section 4.2 were easy for any local adaptive dynamics: i.e., for any process that moved the

population ‘uphill’ by point-mutations. Whereas in Chapter 4, I showed that local fitness optima

may not be reachable in a reasonable amount of time, even when allowing progressively more

general evolutionary dynamics, in this chapter I will focus on when a local fitness optimum is

reachable in a reasonable amount of time under any local adaptive dynamics. In other words, I

will be expanding the class of very easy landscapes beyond just smooth fitness landscapes.

Local adaptive dynamics is a large class of potential evolutionary dynamics that is useful not

only because it captures many of our intuitions about evolutionary hill climbing and local search

but also because it allows me to focus on a structural feature of fitness landscapes: the length of the

longest adaptive path in the landscape (see Definition 3.1 for adaptive paths). If a fitness landscape

is easy for any local adaptive dynamic then there are no long adaptive paths in the landscape and

vice versa. In this chapter, I will use easy (or more appropriately ‘very easy’) to mean that a family

of fitness landscapes only has short adaptive paths (i.e., of length that is polynomially bounded).

I will consider the fitness landscapes hard (for some local adaptive dynamic) otherwise.

To extend the boundary of the class of very easy fitness landscapes, I will adapt existing proof

techniques and develop new ones. In Section 5.1, I will formalize the technique of minimizing

span of distinct fitness values that I used implicitly in the proofs of Proposition 4.29 and Theo-

rem 4.30 (and that have been used in prior work on locally optimal MAX-SAT [180, 153]). This

will let me establish, in Section 5.1.1, that biallelic gene-interaction networks of degree ≤ 2 are easy

(Theorem 5.6). But, in Section 5.1.2, I will show that span arguments are incapable of extending

much beyond this. In particular, even tree-structured gene-interaction networks of max degree

4 can have exponential minimal span even though their fitness landscapes only have short adap-

tive paths (Example 5.11). To address this limitation, in Section 5.2, I will develop a new proof

technique using encouragement paths to show that all tree-structured biallelic gene-interaction net-

works correspond to very easy fitness landscapes (Theorem 5.15). Finally, in Section 5.3, I will

show that the encouragement paths technique cannot be pushed further. In particular, there exist

exponentially long adaptive paths in tree-structured triallelic gene-interaction networks (Exam-

ple 5.25) and in biallelic gene-interaction networks of treewidth 2 (Example 5.26). Thus, classes of
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fitness landscapes that contain either of these two examples are not very easy.

5.1 Minimizing the span of fitness values

In this section, I consider the numerical values of the constraints in a VCSP-instance, and show

that a simple function of these provides a bound on the length of the longest directed path in

the associated fitness graph, and hence a bound on the number of steps taken by a local search

algorithm.

Definition 5.1. Given a VCSP-instance C = {CS1
, . . . , CSm} over domain Dn, define span(C) =∑m

k=1(maxz∈DSk CSk(z)−minz∈DSk CSk(z)).

Proposition 5.2. Given a VCSP-instance C, with associated fitness graph GC, the length of the

longest directed path in GC is less than or equal to span(C).

Proof. The maximum value of the fitness function f implemented by C cannot exceed the sum of

the largest magnitude in each constraint. Similarly, the minimum value of f cannot be less than the

sum of the smallest magnitude in each constraint. The difference between these bounds is precisely

span(C). Since we have defined a VCSP-instance, and hence the associated fitness function f , to

be integer-valued, each adaptive step in the fitness graph increases fitness by at least one, so there

can be at most span(C) many such steps in any path.

Note the similarity in the proof of Proposition 5.2 and the proofs of Proposition 4.29 and

Theorem 4.30. In fact, I could have gotten Proposition 5.2 from Proposition 4.29 by noting that

for an integer VCSP, fδ ≥ 1 and fmax ≤ span(C). Even more simply, the above results could be

restated as: “if a fitness landscape only has a few fitness values and each step increases the fitness

value then there can only be a few steps” – and various more complicated evolutionary dynamics

are often analyzed in great details on these sort of simple low-span fitness landscapes [35].

The key difference that I want to focus on in this section is that we will express span results (and,

later in Section 5.2, encouragement results) in terms of properties of the gene-interaction network

(i.e., VCSP-instance) that represents a fitness graph, instead of in terms of the direct properties

of fitness landscapes themselves. By doing this, I am aiming to classify fitness landscapes as easy

or hard (i.e., to build a hardness dichotomy) based on properties of their representations as gene-

interaction networks. The long-term research goal is that we could carry out a process like the

following (a fitness landscape version of the game assay that I develop in Chapter 7):

1. measure actual gene-interaction networks from local fitness landscapes (using a procedure

like the one in Section 3.7.1) then
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2. look at the measured gene-interaction networks and

3. determine from this representation if the corresponding fitness landscapes has short or long

adaptive paths – or, more generally, if we should expect evolution to quickly find a fitness

peak or not.

Unfortunately, without further refinement, the span of a gene-interaction network corresponding

to a fitness landscape is not always informative.

Example 5.3. Consider the smooth fitness landscape implemented by the following unary compo-

nents: C = {C{i} | C{i} =

 0

2i

}. This fitness landscape is smooth and thus has a longest adaptive

path of length n, but span(C) = 2n.

To avoid a large discrepancy between the longest adaptive path and span and thus obtain a

tighter bound, we can consider sign-equivalent VCSP-instances that have a smaller span. In the

case of Example 5.3, a sign-equivalent minimal span VCSP would be given by C′ = {C{i} | C{i} =0

1

}, which has span(C′) = n – giving us a tight bound on the longest adaptive path. In general,

if we do not restrict the arity of the constraints then we can always find a sign-equivalent instance

where the length of the longest path in the fitness graph is exactly equal to the span:

Proposition 5.4. Given a VCSP-instance C, on n variables, there exists a sign-equivalent VCSP-

instance C′ of arity n such that the length of the longest directed path in the associated fitness graph

is exactly equal to span(C′).

Proof. With an n-ary constraint, we are free to assign arbitrary fitness values to any variable

assignment. So just consider the fitness graph GC as a poset. Let M be the maximum depth of

this poset – this is equal to the length of the longest directed path in GC . Let C′ = {C[n]}, where

C[n] is the n-ary constraint where each variable assignment is given the fitness value of M minus

its depth in the poset.

The technique used in the proof of Proposition 5.4 will generate constraints of very high arity.

In the above smooth example, however, we had a tight bound while maintaining arity 1. So even

if we restrict the arity of the constraints, then we can still obtain useful bounds in some cases by

showing that there exists a sign-equivalent VCSP-instance with a small span, as I will show in

Section 5.1.1. But these span arguments are also limited and cannot always produce tight bounds

with low arity, as I will show in Section 5.1.2.
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5.1.1 Quadratic span for gene-interaction networks of degree ≤ 2

In general, there are landscapes other than smooth ones and VCSP instances that contain con-

straints of arity-n where span arguments can still be useful:

Example 5.5. (Path of length
(
n
2

)
+ n) Consider the binary Boolean VCSP-instance C:

x1 x2 x3 · · · xn

0

n


1 0

0 1


2 0

0 2


3 0

0 3


n− 1 0

0 n− 1



To obtain a path of length
(
n
2

)
+n in the corresponding fitness graph GC, consider an initial variable

assignment of x = (10)
n
2 if n is even and x = (10)

n−1
2 1 if n is odd, and always select the leftmost

variable that is able to flip. This will increase the fitness by 1 at each step, starting from 0 to

span(C) = 1 + 2 + ·+ n = n(n+1)
2 .

For example, when n = 4, this gives the following sequence of eleven assignments, each of which

increases the value of the fitness function by one:

1010→0010→0110→1110→1100→1000→0000→0001→0011→0111→1111 (5.1)

Unfortunately, not all VCSPs will make it as obvious as Example 5.5 that a span argument can

be used to bound the length of the longest adaptive path. But there is a span argument that gives

us a bound on all cases like Example 5.5 – in the rest of this section, I will prove the following:

Theorem 5.6. All binary Boolean VCSPs with constraint graphs of degree ≤ 2 have a minimal

span of O(n2) and thus every adaptive path in their fitness graphs has at most O(n2) steps.

To find useful span bounds, it is helpful to define a procedure for picking out a sign-equivalent

VCSP of minimal span. This can be framed as an optimization problem on a ‘lifted’ or ‘meta’

CSP corresponding to a given VCSP instance. To define the lifted CSP, I need to introduce two

new kinds of constraints:

Definition 5.7. Given two sets of variables L and R, let ≤+k [L,R] be a meta-constraint of arity

|L|+ |R| that is satisfied when k +
∑
x∈L x ≤

∑
y∈R y. Call L the left side of the meta-constraint

and R the right side. Similarly, define =+k [L,R] as above but with ≤ replaced by =.

Using the above constraints, we can define a lifted-CSP – a generalization of the linear program

that Poljak [180] used to analyze MAX-CUT – as follows:
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Definition 5.8. Given a simple binary boolean VCSP-instance C on n loci (with a constraint

graph that has neighbourhood function N : [n] → 2[n]), the corresponding lifted-CSP instance D

has |C| many meta-variables {pi|C{i} ∈ C} and {pij |C{i,j} ∈ C} with domains of N. Divide the

meta-variables V into two sets V+, V− with pi ∈ V+ or pij ∈ V+ if ci > 0 or cij > 0 and otherwise

pi ∈ V− or pij ∈ V− if ci < 0 or cij < 0.

For each locus i ∈ [n] in the original VCSP, make 2|N(i)| many meta-constraints, one for each

Y ⊆ N(i) depending on the sign of s = ci +
∑
j∈Y cij :

• If s < 0 then add the constraint ≤+1 [(Y ∪ {i}) ∩ V+, (Y ∪ {i}) ∩ V−], else

• If s = 0 then add the constraint =+0 [(Y ∪ {i}) ∩ V+, (Y ∪ {i}) ∩ V−], else

• If s > 0 then add the constraint ≤+1 [(Y ∪ {i}) ∩ V−, (Y ∪ {i}) ∩ V+].

Note that the lifted-CSP has at least one satisfying assignment given by pi = |ci| and pij = |cij |

(i.e., the absolute value of the magnitude of the original VCSP constraints).

The resultant lifted-CSP is complicated, but we can use various local consistency conditions to

make it simpler by pruning the meta-variables corresponding to unary constraints:

Proposition 5.9. A lifted-CSP instance D can be pruned of all meta-variables that correspond to

unary constraints in the original VCSP instance C in such a way that:

• the pruned lifted-CSP D′ will only have meta-constraints of the types =0 and ≤{+1,2}.

• for any meta-constraint D ∈ D′ there will be a corresponding locus i in C such that any

meta-variables in the scope of D will be of the form pik for some k ∈ NC(i).

• any satisfying assignment to D′ can be converted to a satisfying assignment to D.

Proof. Let us consider the locus i in the VCSP, the corresponding meta-variable pi in the lifted-

CSP, and its ‘neighbouring’ meta-variables Vi = {pij | j ∈ N(i)} which we will divide into two sets

S and T based on if the constraints that the meta-variables correspond to agree or not on sign

with ci. Specifically:

• if ci > 0 then let S = (Vi ∩ V+) ∪ {pi} and T = Vi ∩ V−, otherwise

• if ci < 0 then let S = (Vi ∩ V−) ∪ {pi} and T = Vi ∩ V+.

This is a useful division because the left hand side of every meta-constraint involving pi will be a

subset of one of the sign sets S or T and the right hand side will be a subset of the other sign set.
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Order all subsets of T by the sum of their elements, and split this order into three sets:

B = {X | X ⊆ T and pi >
∑
pij∈X

pij} (5.2)

E = {X | X ⊆ T and pi =
∑
pij∈X

pij} (5.3)

U = {X | X ⊆ T and pi <
∑
pij∈X

pij} (5.4)

There are three possibilities:

1. If |E| = |U| = 0 then all meta-variables in Vi can be eliminated from the lifted-CSP (since if

we restored them then they can all be satisfied by setting pi ← 1 +
∑
pij∈T pij).

2. If |E| > 0 then

(a) select any E ∈ E as a distinguished member;

(b) for any other E′ ∈ E − {E}, add the meta-constraint =0 [E,E′];

(c) for every other existing meta-constraint ≤+1 [L,R] or =0 [L,R] corresponding to locus

i, we must have pi ∈ L or pi ∈ R, if pi ∈ L ⊆ S then replace L by (L − {pi}) ∪ E

otherwise if pi ∈ R ⊆ S then replace R by (R−{pi})∪E. Note that since E ⊆ T , there

will be no collisions in the unions.

3. If |E| = 0, |U| > 0 then

(a) for every pair B ∈ B and U ∈ U , add the meta-constraint ≤+2 [B,U ],

(b) for every other existing meta-constraint corresponding to locus i, if it is of the form

≤+1 [L,R] then

• if pi ∈ L ⊆ S we will remove the existing meta-constraint and create |B| new ones:

for each B ∈ B, add the meta-constraint ≤+2 [B ∪ (L− {pi}), R];

• if pi ∈ R ⊆ S we will remove the existing meta-constraint and create |U| new ones:

for each U ∈ U , add the meta-constraint ≤+2 [L,U ∪ (R− {pi})].

As before, note that since B,U ⊆ T , there will be no collisions in the unions. Finally,

(c) suppose there are m equality constraints: =0 [Lj , Rj ] for 1 ≤ j ≤ m with pi ∈ Lj .

Create

i. m(m−1)
2 new equality constraints for each pair 1 ≤ j ≤ l ≤ m add =0 [(Lj −{pi})∪

Rl, (Ll − {pi}) ∪Rj ] and
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ii. m(|B|+ |U|) new constraints; for each B ∈ B add ≤+1 [(Lj − {p+ i}) ∪B,Rj ] and

for each U ∈ U add ≤+1 [Rj , (Lj − {pi}) ∪ U}.

If any meta-constraint created above has the same meta-variable in both its left and right hand

side then that meta-variable can be removed from both sides of that meta-constraint.

This leaves us with meta-variables in the lifted CSP corresponding only to the binary constraints

in the original VCSP. Further the meta-constraints are only between meta-variables whose binary

constraints share a vertex.

In particular, Proposition 5.9 means that if our VCSP had degree ≤ 2 then the corresponding

pruned lifted-CSP will have binary meta-constraints and degree ≤ 2. We can orient these edges in

the meta-constraint graph as follows:

• ≤{+1,2} [{pij}, {pkl}] means a directed edge pij → pkl,

• ≤{+1,2} [, {pij , pkl}] means no edge between pij and pkl, and

• =0 [{pij}, {pkl}] means an undirected edge pij — pkl.

Given that the initial VCSP instance constraint weights satisfy the lifted-CSP, it means there

cannot be any directed cycles in the meta-constraint graph. Thus, the meta-constraint graph is a

union of undirected cycles and paths that can mix both directed and undirected edges. All cycles

of undirected edges can be satisfied by setting their meta-variables to 1. To satisfy the paths, we

start by setting the sources to 0, 1 or 2 and then following the edges to increment the subsequent

meta-variable by 0, 1 or 2 depending on if the meta-constraint leading to it was =0,≤+1 or ≤+2,

respectively.

Since there are at most n meta-variables, this means that the largest assigned value will be at

most 2n; and the largest sum of the meta-variables will be < n(n+ 1). If we reconstruct the unary

constraints in the VCSP, this means that the span of the corresponding VCSP can be bounded

by 2n(n+ 1). Thus, binary Boolean VCSPs with constraint graphs of degree ≤ 2 produce fitness

landscapes where every adaptive path is shorter than 2n(n+ 1) steps. This completes the proof of

Theorem 5.6.

5.1.2 Limits to the span argument

Span arguments like the one above could be extended slightly to trees of degree ≤ 3, but no further.

In this section, I will give examples of VCSPs with only short adaptive walks but exponential

minimal span.
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Example 5.10. (Large span in constraint graph of degree 3) Consider a binary Boolean

VCSP-instance C with n = 3K + 1 variables. The constraint graph contains a sequence of disjoint

cycles of length three, linked together by a single additional edge joining each consecutive pair of

cycles. The sequence of cycles is started by a single node. Hence the constraint graph of C has

maximum degree three, circumference three, and treewidth two. The k-th cycle (for 0 ≤ k ≤ K−1)

has the following constraints:

· · · 3k + 1

3k + 2

3k + 3 · · ·

ak 0

0 bk



0 0

0 ak + bk + 2


bk + 1 0

0 ak + 1



ak + bk + 3 0

0 1


ak + 3 0

0 ak + 2bk + 5



where ak and bk are defined recursively from one cycle to the next with a1 = b1 = 1 and ak+1 =

ak + 3 and bk+1 = ak + 2bk + 5.

Example 5.11. (Large span in tree-structured constraint graph of degree 4) Consider

the simple binary Boolean VCSP-instance C:

x0 x1

−2

y1

z1

x2

−6

y2

z2

· · · xn

−2n − 2

yn

zn

xn+1
1 3

1

1

7

3

3

2n − 1

2n − 1

2n − 1

2n+1 − 1

the constraint graph of C is tree-structured and has a maximum degree of 4.

It is straightforward to verify that any VCSP that preserves the constraint graphs and corre-

sponding fitness landscapes in these examples must have exponential span. But it is important to

assure ourselves that a lower span cannot be achieved by adding superfluous constraints. After all,

Proposition 5.4 shows that increasing arity can be used to reduce span, so one might expect that

adding extra constraints and thus extra degrees of freedom might help reduce span. In the rest of

this section, I establish that this does not help.
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The main step to showing that span has to be high by lower bounding minimal span is to link

to our concepts of magnitude (Definition 3.14; simple) and sign (Definition 3.20; trim) minimal

VCSPs. This well let us reduce the graph structures that we have to consider when showing that

no low span VCSP exists for a given fitness graph. More formally:

Theorem 5.12. Let C′ be the binary Boolean VCSP-instance of minimal span that implements a

fitness graph G then there exists a simple trim binary Boolean VCSP-instance C that implements

the same fitness graph with span(C′) ≤ span(C) ≤ 4 span(C′).

I establish Theorem 5.12 by showing that if we start with C′ and them simplify it and trim it

to get a minimal (in the sense of Chapter 3) sign-equivalent VCSP C then that VCSP will increase

the span by at most a factor of 4. This proceeds by two steps, in Proposition 5.13 I establish that

simplifying C′ to a minimal magnitude-equivalent VCSP increases span by at most a factor of 4

and in Proposition 5.14 I establish that trimming the simple VCSP does not increase span.

Proposition 5.13. For a binary Boolean constraint graph C′, the corresponding simple (i.e., min-

imal magnitude-equivalent) constraint graph C has span(C) ≤ 4 span(C′).

Proof. Let us decompose span into the contribution due to unaries (span1) and binaries (span2):

span(C) =

span1(C)︷ ︸︸ ︷∑
i∈[n]

|ci|+

span2(C)︷ ︸︸ ︷∑
ij∈E(C)

|cij | (5.5)

Using Equations 3.6 from the proof of Theorem 3.15, we can express |ci| in terms of C′ as:

|ci| = | C ′i[1]− C ′i[0] +
∑

j | ij∈E(C′)

C ′ij [1, 0]− C ′ij [0, 0] | (5.6)

≤ | C ′i[1]− C ′i[0] | +
∑

j | ij∈E(C′)

| C ′ij [1, 0]− C ′ij [0, 0] | (5.7)

≤ span(C ′i) +
∑

j | ij∈E(C′)

span(C ′ij) (5.8)

= span(C ′i) + span({C ′ij | j ∈ NC′(i)}) (5.9)

Notice that the first span in Equation 5.9 is of the unary constraint in C′ that has i as its scope

and the second span is of all binary constraints in C′ that have i in scope (or, equivalently: span

of all edges incident on i in the constraint graph of C′). This means that if we sum |ci| over all

i ∈ [n] then we cover the whole graph:
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span1(C) =

n∑
i=1

|ci| ≤
n∑
i=1

span(C ′i) +

n∑
i=1

span({C ′ij | j ∈ NC′(i)}) (5.10)

= span1(C′) + 2 span2(C′) (5.11)

≤ 2 span(C′) (5.12)

where Equation 5.11 has a double cover in its second summand because each edge in the constraint

graph of C′ has two end points (equivalently: all scopes are binary).

Similarly, using Equations 3.7 from the proof of Theorem 3.15, we can also express |cij | in terms

of C′ as:

|cij | = |C ′ij [0, 0]− C ′ij [0, 1]− C ′ij [1, 0] + C ′ij [1, 1] | (5.13)

≤ | C ′ij [1, 1]− C ′ij [1, 0] |+ | C ′ij [0, 0]− C ′ij [0, 1] | (5.14)

≤ 2 span(C ′ij) (5.15)

As before, if we sum |cij | over all ij ∈ E(C) then we cover the whole graph:

span2(C) =
∑

ij∈E(C)

|cij | ≤ 2
∑

ij∈E(C′)

span(C ′ij) ≤ 2 span2(C′) (5.16)

where for the last inequality we moved from summing over ij ∈ E(C) to ij ∈ E(C′) because

E(C) ⊆ E(C′) by Theorem 3.16. Combining Equations 5.12 and 5.16, we get the final result that

span(C) = span1(C) + span2(C) ≤ 4 span(C′).

Note that proposition 5.13 is the best possible since the following two constraint graphs are

magnitude equivalent:

x1 x2 C∅ = 1 x1

 0

−1

 x2

 0

−1


1 0

0 1

 vs.

0 0

0 2



with the constraint graph on the left having a span of 1 and the simplified constraint graph on the

right having a span of 1 + 2 + 1 = 4. Thus, sometimes the simplifying procedure from section 3.7

can increase span by a factor of 4. In contrast, the trimming procedure from section 3.8 can only

decrease span:
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Proposition 5.14. For a simple binary boolean constraint graph C′, the corresponding minimal

sign-equivalent constraint graph C made by our trimming procedure has span(C) ≤ span(C′).

Proof. The trimming procedure from section 3.8 only removes constraints but doesn’t change any

remaining ones.

By combining Propositions 5.13 and 5.14, I show that a minimal span implementation of any

given fitness graph has a high span if and only if the simple trim constraint graph has high minimal

span. Any more subtle changes to the constraint graph and values can only decrease the lowest

span achieved in this more restricted way by a factor of 4. This establishes Theorem 5.12.

5.2 Tree-structured Boolean VCSP-instances

In this section, I will prove the following:

Theorem 5.15. For a binary Boolean VCSP instance C on n variables, if the constraint-graph of

C is a tree, then any directed path in the associated fitness graph GC has length at most
(
n
2

)
+ n.

Note that this result bounds the length of any adaptive path in GC , not just the path taken

by a particular local search algorithm or local adaptive dynamics. Thus, on such landscapes even

choosing the worst possible sequence of improving moves results in a local optimum being found

in polynomial time.

I will show in Section 5.3 that the conditions of being Boolean and tree-structured are essential

to obtain a polynomial bound on the length of all paths. To see that the bound in Theorem 5.15 is

the best possible for binary Boolean tree-structured VCSP-instances, consider the path-structured

gene-interaction network on n loci from Example 5.5 that has adaptive paths of length
(
n
2

)
+ n.

For the proof of Theorem 5.15, we introduce some further definitions.

Definition 5.16. Given any directed path p = x1 . . . xt . . . xT in a fitness graph G, define the flip

function as m(t) = (i 7→ b) where xt+1 ⊕ xt = ei and b = xt+1
i (i.e., the i-th variable is flipped at

time t to value b).

For illustration the above definition, recall the n = 4 case of Example 5.5 with an adaptive

path of 10 =
(

4
2

)
+ 4 fixations and 11 genotypes from Equation 5.1:

1010→0010→0110→1110→1100→1000→0000→0001→0011→0111→1111 (5.1)

The above adaptive path corresponds to the following flip function:
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t 1 2 3 4 5 6 7 8 9 10

m(t) 1 7→ 0 2 7→ 1 1 7→ 1 3 7→ 0 2 7→ 0 1 7→ 0 4 7→ 1 3 7→ 1 2 7→ 1 1 7→ 1

To obtain the bound on the length of paths given in Theorem 5.15, I will identify a structure in

the flip function to bound the maximum possible value for T . This requires a few more definitions:

Definition 5.17. We say that a flip m(t′) = (j 7→ c) supports a flip m(t) = (i 7→ b) if t′ < t and

Cij(b, c)− Cij(b, c) > Cij(b, c)− Cij(b, c); if xtj = c, then the support is said to be strong.

It is useful to note that the inequality on Cij is symmetric in the sense that:

Cij(b, c)− Cij(b, c) > Cij(b, c)− Cij(b, c)

⇔ Cij(b, c)− Cij(b, c) > Cij(b, c)− Cij(b, c)

⇔ Cji(c, b)− Cji(c, b) > Cji(c, b)− Cji(c, b)

(5.17)

Due in part to this symmetry, the definition of encouragement interacts well with the following

notion:

Definition 5.18. Given a binary Boolean VCSP-instance C implementing fitness function f , the

fitness contribution of the variable at position i in assignment x, restricted to S ⊆ [n] is defined

to be:

fSi (b|x) =


Ci(b) if i ∈ S

0 otherwise

+
∑

j∈NC(i)∩S

Cij(b, xj) (5.18)

if S = [n] then we just write fi rather than f
[n]
i .

Note that for any path p in G, if m(t) = (i 7→ b) then fi(b|xt) > fi(b|xt).

I now introduce an encouragement relation between a flip and its most recent strong supporting

flip, if there is one:

Definition 5.19. We say that a flip m(t) = (i 7→ b) is encouraged by its most recent strong

supporting flip m(t′) = (j 7→ c), and write (t′, j 7→ c)← (t, i 7→ b). If there are no strong supporting

flips, then we say that a flip m(t) = (i 7→ b) is courageous, and write ⊥ ← (t, i 7→ b).

Note that if (t′, j 7→ c)← (t, i 7→ b), then t′ < t and i ∈ NC(j).

For illustration, consider again the sequence of moves listed in Equation 5.1 of Example 5.5. It

corresponds to the following encouragement relation, which I will call the encouragement graph:
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⊥ ← (1, 1 7→ 0) ⊥ ← (2, 2 7→ 1) ← (3, 1 7→ 1)

⊥ ← (4, 3 7→ 0) ← (5, 2 7→ 0) ← (6, 1 7→ 0)

⊥ ← (7, 4 7→ 1) ← (8, 3 7→ 1) ← (9, 2 7→ 1) ← (10, 1 7→ 1)

Proposition 5.20. If (t1, j 7→ c) ← (t2, i 7→ b) (or if ⊥ ← (t2, i 7→ b), set t1 = 0) then for all

t1 < t′ ≤ t2 we have fi(b|xt
′
)− fi(b|xt

′
) ≥ fi(b|xt2)− fi(b|xt2) > 0.

Proof. Define the set of temporary supports Sw as the set of positions of flips after t1 that supported

(t2, i 7→ b) but were not strong (i.e., they were flipped back by the time we got to t2: for supportive

(t′′, k 7→ a) with t′′ > t1 we have k ∈ Sw ⇒ a 6= xt2 [k]).

Consider any flip m(t′) = (k 7→ a) for t′ ∈ [t1 + 1, t2 − 1]. Since it either didn’t support

(t2, i 7→ b) (and so had Cij(b, a) − Cij(b, a) ≤ Cij(b, a) − Cij(b, a) by Equation 5.17) or was a

temporary support, we have that:

f
[n]−Sw
i (b|xt

′+1)− f [n]−Sw
i (b|xt

′+1) ≤ f [n]−Sw
i (b|xt

′
)− f [n]−Sw

i (b|xt
′
) (5.19)

Thus δi(t
′) = f

[n]−Sw
i (b|xt′) − f [n]−Sw

i (b|xt′) is monotonically non-increasing in t′ over the time

interval [t1 + 1, t2]. So:

f
[n]−Sw
i (b|xt

′
)− f [n]−Sw

i (b|xt
′
) ≥ f [n]−Sw

i (b|xt2)− f [n]−Sw
i (b|xt2) (5.20)

Since every position k ∈ Sw supported (t2, i 7→ b) but is absent in xt2 , we must have fSwi (b|xt2)−

fSwi (b|xt2) ≤ fSwi (b|xt′) − fSwi (b|xt′). Noting that fi = f
[n]−Sw
i + fSwi then lets us combine this

with Equation 5.20 (and the fact that fi(b|xt2) > fi(b|xt2)) to complete the proposition.

By Definition 5.19, each flip can only be encouraged by at most one other flip, so each node in the

encouragement graph has out-degree at most one. Directed graphs where each vertex has at most

one parent are forests, so the encouragement graph is a forest. This forest has a component for

each courageous flip, and we will now show that there are at most n of these:

Proposition 5.21. At each variable position i, only the first flip can be courageous.

Proof. Consider a courageous flip ⊥ ← (t, i 7→ b), by Proposition 5.20, we know that for all t′ < t:

fi(b|xt
′
)− fi(b|xt

′
) ≥ fi(b|xt)− fi(b|xt) > 0. Thus, there is no time t′ ≤ t such that i could have

flipped to b: hence i was always at b for t′ ≤ t. So the courageous flip had to be the first flip at

that position.
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I will now prove that an encouragement tree cannot double-back on itself in position (Proposi-

tion 5.22), and that every branch is a branch in position (Proposition 5.23). When the constraint

graph is itself a tree, this will imply that each tree in the encouragement forest is a sub-tree of the

constraint graph.

Proposition 5.22. If (t1, i 7→ a)← (t2, j 7→ b)← (t3, k 7→ c) then i 6= k.

Proof. Since (t1, i 7→ a) strongly supported (t2, j 7→ b), we have xt2i = a. If, for the sake of

contradiction, we assume that i = k then a = c (because if we had c = a then the two en-

couragements would force a contradiction via clashing Equations 5.17) and by Proposition 5.20:

fi(a|xt
′
) − fi(a|xt

′
) ≥ fi(a|xt3) − fi(a|xt3) ≥ 0 for all t2 < t′ ≤ t3. But this means that i cannot

be flipped to a and thus m(t3) = (i, a) is not a legal flip. This is a contradiction and so i 6= k.

Proposition 5.23. For all i, j and t1 < t2 ≤ t3: if (t1, i 7→ a) ← (t2, j 7→ b) and (t1, i 7→ a) ←

(t3, j 7→ c), then t2 = t3.

Proof. From Proposition 5.20, we can see that for all t′ ∈ [t1 + 1, t3], fj(c|xt
′
) − fj(c|xt

′
) > 0, so

b = c and j couldn’t have flipped from c to c between t2 and t3. Thus, for (t2, j 7→ c) to be a legal

flip, we must have t2 = t3.

Now, if we look along the arrows then each flip in p is the start of a path of encouraged-by links

that ends at one of the n courageous flips.

One final case to exclude is that there might be two encouragement paths that go in the opposite

direction over the same positions. This cannot happen:

Proposition 5.24. Having both of the following encouragement paths is impossible:

⊥ ← (t1, i1 7→ b1)← (t2, i2 7→ b2) ← · · · ← (tm, im 7→ bm) (5.21)

⊥ ← (sm, im 7→ cm)← (sm−1, im−1 7→ cm−1) ← · · · ← (s1, i1 7→ c1) (5.22)

Proof. Without loss of generality (by relabeling), we can assume that t1 < s1. We can extend this

with the following claim:

Claim: If tk < sk then tk+1 < sk+1

Since (tk, ik 7→ bk)← (tk+1, ik+1 7→ bk+1), we have, for all t ∈ [tk + 1, tk+1], xt[ik] = bk. Thus

we can’t have ik flipping in that interval, so sk > tk+1.

But now look at (sk+1, ik+1 7→ ck+1) ← (sk, ik 7→ ck). This shows that we also have, for all

t′ ∈ [sk+1 + 1, sk], xt
′
[ik+1] = ck+1. So for both flips at ik+1 to happen, we need sk+1 > tk+1.
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Applying the claim repeatedly gets us tm < sm. But this means that im flipped before m(sm), so

by Proposition 5.21 (sm, im 7→ cm) could not have been courageous.

This means that it is sufficient to simply count the number of undirected paths in the encour-

agement trees. I can now pull all the results together to complete the proof.

Proof of Theorem 5.15. Consider any path p in the fitness graph, and its corresponding flip

function m. By the completeness of Definition 5.19, we know that every flip must have been either

courageous or encouraged.

Any encouraged flip is the end-point of a unique (non-zero length) encouragement path in

the constraint graph starting from some courageous flip (where Proposition 5.22 established that

they’re encouragement paths, not walks; and Proposition 5.23 established that the encouragement

paths are uniquely determined by the variable positions that they pass through.) From Proposi-

tion 5.24, we know that there cannot be two encouragement paths that traverse the same positions

but in opposite directions. Thus, there can only be as many non-zero-length encouragement paths

as undirected paths in our constraint graph. Since our constraint graph is a tree, an undirected

non-zero length path is uniquely determined by its pair of endpoints. Thus, there are at most
(
n
2

)
of these paths.

From Proposition 5.21, there are at most n courageous flips (encouragement paths of length

0). Thus, our path p must have length at most n+
(
n
2

)
.

5.3 Long paths in landscapes with simple constraint graphs

In this section, I show that the conditions in Theorem 5.15 are essential. I exhibit binary VCSP-

instances with very simple constraint graphs where the associated fitness graphs have exponentially-

long directed paths. Thus there is some local adaptive dynamic that will not find a local fitness

optimum in a reasonable amount of time. In other words, these fitness landscapes are not easy for

all adaptive dynamics: there exist some adaptive dynamics where finding a local optimum takes an

unreasonable amount of time. Note that the existence of some long paths (that I give examples of

here) is a much weaker condition than the hardness conditions described in Chapter 4 (which are

long for clever algorithms or all algorithms) – I visualize the relationship between these different

simplicity and complexity measures in Section 5.4.

Example 5.25. (Long adaptive paths in triallelic Domain size 3) Consider a binary VCSP-

instance C, with variables xn, xn−1,, . . . , x2, x1, x0, and constraints {Cn,n−1, . . . , C32, C21, C10} over
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the uniform domain D = {0, 1,B}, where each constraint Cij is represented by the following matrix:

Cij = 3i−1


1 2 3

2 3 1

3 1 2

 (5.23)

Even though the constraint graph of C is just a path of length n, we now show the corresponding

fitness graph, GC, contains a directed path of exponential length.

Notice that given two natural numbers M,M ′ < 2n written in binary as xM , xM
′ ∈ {0, 1}n with

the least significant digit as x0, we have that if M ′ > M then f(M ′) > f(M). Thus, counting up

in binary from 0n+1 to 01n is monotonically increasing in fitness. However, xM+1 is often more

than a single flip away from xM (consider the transition from xM = 01n for an extreme example).

We handle these multi-flip cases with our third domain value, B, as follows: (1) given xM = y01k

where y ∈ {0, 1}n−k, we proceed to replace the 1s in the right-most block of 1s by B, starting from

xMk−1 and moving to the right; (2) from y0Bk we can take a 1-flip to y1Bk (regardless of y0 = 0

or 1); (3) from x′ = y1Bk, we replace the Bs by 0s, starting from the rightmost B (i.e., x′0) and

moving to the left.

This lets our sequence of moves count in binary from 0n+1 to 01n (passing through 2n states of

just 0s and 1s), while using extra steps with Bs to make sure all transitions are improving 1-flips;

thus, this path in the fitness graph has a length greater than 2n.

The final example is a binary Boolean VCSP where the constraint graph has tree-width two and

maximum degree three, but the associated fitness graph contains an exponentially long directed

path. This example is a simplified and corrected version of a similar example for the Max-

Cut problem, described by Monien and Tscheuschner [153]. Note, however, that by allowing

general valued constraints, instead of just Max-Cut constraints, we are able to reduce the required

maximum degree from 4 to 3.

Example 5.26. (Tree-width 2) Consider a binary Boolean VCSP-instance C with n = 4K + 1

variables. The constraint graph contains a sequence of disjoint cycles of length four, linked together

by a single additional edge joining each consecutive pair of cycles. The final cycle is replaced by a

single variable xn with unary constraint

 0

−wK

. Hence the constraint graph of C has maximum

degree three and treewidth two. The i-th cycle (for 0 ≤ i ≤ K − 1) has the following constraints

(where the wi values are defined recursively with w0 = 0):
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· · ·x4i+1

x4i+2

x4i+4

x4i+3

· · ·

(2wi + 2)

0 0

0 1


(wi + 1)

1 0

0 1

 wi

1 0

0 1


(2wi + 4)

1 0

0 1


(2wi + 3)

1 0

0 1



(3wi + 6︸ ︷︷ ︸
wi+1

)

1 0

0 1



To begin the long path all variables are assigned 0, except xn = 1. The path will proceed by always

flipping variables in the smallest 4-cycle block possible.

Within each 4-cycle block, let us write the 4 variables by decreasing index as x4i+4x4i+3x4i+2x4i+1.

We will make the following transitions within each cycle: if x4(i+1)+1 = 1 then we’ll transition

0000 → 1000 → 1001 → 1101; if x4(i+1)+1 = 0 then we’ll transition 1101 → 0101 → 0100 →

0110 → 0010 → 0011 → 0001 → 0000. Every time that x4i+1 is flipped from 0 to 1 or vice versa,

we’ll recurse to the (i − 1)th cycle. Because x4i+1 ends up flipping from 1 to 0 twice as often as

x4(i+1)+1, this means that we double the number of flips in each cycle. Variable xn will flip once,

from 1 to 0, due to the unary constraint, which will cause x4(K−1)+1 to flip twice from 1 to 0, which

will cause x4(K−2)+1 to flip four times from 1 to 0, and so on, until eventually this will cause x1

to flip 2K times from 1 to 0. Hence we have an improving path of length greater than 2K .

Note that Examples 5.25 and 5.26 have long paths, but these are not the paths that would

be followed by fittest-mutant SSWM dynamics (nor random fitter-mutant SSWM). In the above

examples, the fittest-mutant path is still short and so the examples are easy for fittest-mutant

SSWM. However, with careful padding, Example 5.25 can be converted to a Boolean VCSP of

treewidth 7 that is hard for fittest-mutant SSWM. This is an involved construction that is presented

in Cohen et al. [32].

5.4 Visualizing boundary between easy vs. hard landscapes

In Chapter 4, I introduced the distinction between easy vs hard fitness landscapes and showed the

most extreme examples of the two kinds. In this chapter, the goal of both the span arguments of

Section 5.1 and the encouragement paths of Section 5.2 is to better understand where provably

easy fitness landscapes end and hard landscapes begin. So to finish this chapter, I want to visualize

in Figure 5.1 this boundary that separates easy vs hard. For simplicity, I focus on just biallelic

fitness landscapes since the only higher-allelic landscape I explicitly discussed was in Example 5.25.
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Figure 5.1: Structure of easy vs hard biallelic gene-interaction networks: Each node is a
class of fitness landscapes: i.e., a set of families of fitness landscapes. On the left are simplicity
(green) and complexity (red) classes and on the right are expressiveness classes. Complexity
proceeds from hardest on top and easiest on the bottom. Black edges between expressiveness
classes correspond to set inclusion: class at the tail of the arrow is a subset of the class at the
head. Green edges between expressiveness classes and simplicity classes correspond to set inclusion:
expressiveness class at the tail is a subset of the simplicity class at the head – this is interpreted
as ‘easier than’. Red edges between complexity classes and expressiveness classes correspond to
membership: there exists families of fitness landscapes in the complexity class at the tail that are
also expressible by (i.e., members of) the class at the head – this is interpreted as ‘harder than’.
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The most difficult part of the visualization is that I am dealing with two different variables at

once. On the one hand (the left side of Figure 5.1) are the different notions of easiness (green)

and hardness (red). On the other hand (the right side of Figure 5.1) are the different kinds of

fitness landscapes. To attach these hands to the same torso, it helps to consider both as classes

of landscapes, i.e., as sets that contain families of fitness landscapes where a family is itself a set

of fitness landscapes indexed by a size parameter n. In Figure 5.1, I draw a node (i.e., a block of

text) for each class. On the left I have the different notions of hardness (complexity classes – in

red) and notions of easiness (what I call simplicity classes – in green) and on the right side I have

the different classes of landscapes (which I call expressiveness classes, since I mostly describe them

in terms of fitness graphs expressible by certain restricted kinds of gene-interaction networks).

For example, consider the node for the complexity class ‘Long paths exist’: a family of fitness

landscapes belongs to this class, if as we increase the index n of the family, the longest adaptive path

in the fitness landscape on n loci scales super-polynomially in n. As another example, consider the

node for the simplicity class ‘Easy for fittest SSWM’: a family of fitness landscapes belongs to this

class, if as we increase the index n of the family, the fittest mutant strong-selection weak mutation

dynamics on the landscape on n loci takes a number of adaptive steps that scales polynomially

with n. As a final example, consider the expressiveness class ‘GINs of treewidth ≤ 2’: a family of

fitness landscapes belongs to this class if every fitness landscape in that family is sign-equivalent

to a gene-interaction network that has a constraint graph of treewidth 2.

Between these nodes, I draw edges to represent three kinds of relationships, and I omit two

other kinds of edges. Figure 5.1 is organized with harder classes on top and easier classes lower

down, this lets me omit two kinds of edges: those between pairs of red complexity classes and those

between pairs of green simplicity classes. In particular, every complexity class is a subset of every

other complexity class below it in the hierarchy. For example, if a family of fitness landscapes is

PLS-complete then it must have long paths thus the class of ‘PLS-complete...’ is a subclass of

‘Long paths exist’. Similarly, every simplicity class is a subset of every simplicity class above it in

Figure 5.1. Hence, the edges corresponding to the above two kinds of relationships are omitted in

the figure. For the expressiveness classes, however, the subset relationship is not as straightforward

so I mark it with black edges. In particular, the class X at the tail end of a black edge is a subset

of the class Y at the head. In terms of expressiveness, this means that every fitness landscape that

is expressible by a gene-interaction network that has the restrictions given by X is also expressible

by a gene-interaction network that has the restrictions given by Y . Most of these relationships are

self-evident, although in the case of the classic NK-model with K = 1, the relationship was proved

in Proposition 3.11.
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The most important edges are the relationships that tie the two hands, that connect the sim-

plicity and complexity classes on the left to the expressiveness classes on the right of Figure 5.1.

Each of these relationships was shown in the previous two chapters and so each edge is labeled by

the corresponding Theorem, Example, or – in the case the hardness of gene-interaction networks

of treewidth ≤ 7 – reference to my other work. As with the prior edges, the green edges connecting

expressiveness classes to higher simplicity classes correspond to subsets. What is important, how-

ever, is their interpretation in terms of hardness. If there is a green edge from X to Y then that

means that the fitness landscapes in X are at least as easy as the fitness landscapes in Y . What

departs from the prior convention is the red edges from a complexity class to a higher expressive-

ness class. Instead of the subset relationship, it corresponds to a membership-like relationship. In

particular, if there is a red edge from a complexity class X to an expressiveness class Y then there

is a family of fitness landscapes in X that can be expressed by the gene-interaction networks that

specify Y . I interpret this as a hardness relationship: Y is at least as hard as X in the worst case.

Finally, I place some expressiveness classes at suggestive heights in Figure 5.1 to capture some

conjectures that are beyond the scope of this thesis. For example, I place gene-interactions networks

of treewidth ≤ 2 at the same level of hardness as ‘easy for fittest SSWM’. This reflects my belief

that Example 5.26 having long paths but still being easy for fittest-mutant dynamics is not a

pathological feature but something true of all treewidth ≤ 2 networks – I suspect they are all easy

for fittest-mutant SSWM. Due to Cohen et al. [32], we know that this is not true for treewidth 7,

so it remains an open question to find at what treewidth binary Boolean VCSPs transition from

being easy for fittest-mutant SSWM to being hard. The biggest open question, however, is the

status of the classic NK model with K = 1. For K = 0 it is a smooth landscape and, for K = 2 it

is PLS-complete (Theorem 4.25). Since the global optimum of the classic NK model can be found

with dynamic programming for K = 1 [233], we can conclude that it is not PLS-complete. In fact,

given that it differs by a single Boolean constraint from tree-structured gene-interaction networks,

I suspect it is a very easy fitness landscape – i.e., I suspect that all adaptive paths are short in

the biallelic classic NK-model with K = 1. That is why I placed it slightly below the ‘very easy’

simplicity class in Figure 5.1. But it remains for future work to confirm these conjectures and draw

in the missing edges.

5.5 Summary

As I mentioned in Chapter 2, prior to my theory of hard fitness landscapes, if a biologist found a

population to be at a local fitness peak then that in itself did not motivate further questions. But
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that approach took easy landscapes for granted. Now finding a population at a local fitness peak

can start to motivate a new question: is this fitness landscape easy, and if so why? To approach

such a question, we need techniques for formally proving that certain landscapes are easy vs hard.

In this chapter, I reviewed the existing technique of span arguments (Section 5.1) and showed its

limits (Section 5.1.2). To overcome these limits, I had to develop a new proof technique based on

encouragement paths (Section 5.2). I used this to establish that all fitness landscapes implemented

by binary Boolean tree-structured gene-interaction networks on n loci are easy and have adaptive

paths of length at most
(
n+1

2

)
(Theorem 5.15). Along the way, I started a taxonomy of fitness

landscapes into complexity and simplicity classes that I summarized in Figure 5.1 and Section 5.4.

Many aspects of this taxonomy could be refined and further populated in future work. But it is

also important to question the idealization of fitness as a scalar that made fitness landscapes so

easy to work with, as I do in Part II of this thesis.



Part II

Empirical Abstraction:

Ecology from Evolutionary Games

Nothing in evolution makes sense except in the light of ecology

Grant and Grant [69]
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Chapter 6

Reductive vs effective evolutionary

games

Throughout the first part of the thesis, I have taken fitness as given without much critical scrutiny.

In this chapter, I want to remedy this oversight by asking: what category or kind of thing is fitness?

By exploring this question, we will move from fitness landscapes to evolutionary game theory (EGT)

and discover that there are two different conceptions of evolutionary games: reductive vs. effective.

Reductive vs effective games is a subtle distinction that will take me the whole chapter to illustrate

before I can move on, in Chapter 7, to directly measuring the effective games played by non-small

cell lung cancer.

Fitness landscapes conceptualize fitness as a single scalar value – a number. This scaler view

makes fitness into a feature of a single organism (or genotype), independent of the rich biotic

ecology of other organisms. In other words, the scalar view ignores ecology. But the fitness of

most real organisms is entwined with the distribution of other organisms. To represent this rich

ecology, we have to transform fitness from a scalar to a function.

Although the above is a general point for all of biology, for simplicity, I will often use the

language of the microscopic biology of cells, especially of cancer cells, as an example throughout

this part of the thesis. In this setting, a scalar fitness can only express cell-autonomous effects,

where fitness is inherent to the properties of a single cell. Real cells, however, can display important

non-cell-autonomous effects that allow fitness to depend on a cell’s micro-environmental context,

including frequency of other cell types. To accommodate this, evolutionary game theory views

these cell types as strategies, and models fitness as a function which depends on the abundance of

each of the strategies in the population. On the surface, the games perspective is more expressive,

117
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since scalars can be represented as constant functions.

But we pay for greater expressiveness with a loss of techniques for analyzing the dynamics. For

example, when dealing with fitness landscapes, we can often consider the strong-selection weak-

mutation limit – as I did in Section 4.3 – which allows us to replace a population by a single point

in the landscape. In the case of evolutionary games, such an approximation is unreasonable since

it would eliminate the very interactions that EGT aims to study. Instead, more complicated algo-

rithms like replicator dynamics need to be studied. In practice, this means that the strategy space

that can be analysed in an evolutionary game is usually much smaller than the genotype/phenotype

space considered in a fitness landscape. Typical EGT studies consider just a handful of strategies

(most often just two [17, 115, 174], three [18, 118], or four [19]), while fitness landscapes start

at dozens of genotypes and go up to tens of thousands – or even hyper-astronomical numbers of

potential genotypes as I did in the theoretical work in the first part of this thesis.

One of the reasons for my interest in EGT models is due to their successful use in mathemat-

ical oncology. Game theory models have so far had more direct impact in oncology than fitness

landscape models [214, 213, 17, 10, 188]. Even limiting to just my own theoretical work, I’ve used

EGT to establish the significance of tissue edges on cancer cell motility [115]; and the importance

of treatment timing due to social dilemmas of tumour acidity and vasculature [118] and due to the

bone-remodelling cycle [226].

Up to now, the standard approach has been to develop a game theory model from the bottom

up, starting from a reasonable reductive grounding and adding micro-dynamic details. This is in

keeping with the reductionist tactics common in cell biology and molecular biology. For example,

Basanta, Hatzikirou, and Deutsch [17] studied motility in cancer by defining two intuitive strategies:

Go vs Grow. The first model included no spatial aspects; later work built on this by adding

minimal spatial effects and considering the heterogeneity of spatial structure in a tumour [115].

This progression to more complicated and detailed models is a common pattern among EGT

models in oncology. The other common aspect is that the games rely on biological or clinical

intuition; the exact game parameters are seldom measured. This is what I call the reductive

game perspective. This reductive EGT perspective has helped oncologists to express a number of

interesting theoretical consequences of frequency-dependent fitness.

But to achieve direct experimental relevance of EGT in oncology, we need to break out of this

reductive and intuitive mindset. To break us out of this mindset, I will develop a notion of effective

games as a way to empirically abstract over aspects that we cannot measure. In this chapter, I

will introduce into evolutionary game theory the notion of reductive and effective games and the

explicit distinction between them. In Section 6.1, I will motivate replicator dynamics as the central
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algorithm in evolutionary game theory. In Section 6.2, I will discuss two different kinds of fitness:

token vs type. I use these two notions of fitness to give rise to two different kinds of evolutionary

games (reductive vs effective) in Sections 6.3 and 6.4 (respectively). Since effective games are the

more surprising and unfamiliar concept, I discuss a potential pitfall with over-interpreting them in

Sections 6.5 and 6.6. Finally, we need to actually operationalize and then directly measure these

effective games in real cancers: this is what I will do in Chapter 7 with non-small cell lung cancer.

In Chapter 8, I will expand on the dangers of over-interpreting games, and how effective games

can change the way we approach spatially structured populations.

6.1 From fitness to replicator dynamics

Fitness is probably the most central concept in evolutionary biology. This makes fitness something,

that in the words of Stearns [205], “everyone understands but no one can define”. But if we stick

to just mathematics then there is a popular formal definition for fitness w as:

w =
1

N

dN

dt
(6.1)

where N is the size of the population for which we want to define the fitness. This is often called the

‘per capita’ growth rate to allude to the simplest exponential growth model where N is measured

as head count and w is a constant.

A single fitness by itself is seldom useful, instead it makes more sense to have several different

kinds of organisms, with an index x for each, and define a fitness for each x as:

wx =
1

Nx

dNx
dt

(6.2)

In this setting, we can think of the fitness functions from the first part of the thesis as a mapping

f(x) = wx where each wx is assumed to be a constant, and we can think of the fitness landscape

as defining an appropriate notion of ‘nearby’ so that quantities like ∂wx
∂x can be defined.

But if we want to peer into the details of the dynamics of the various types of organisms, x,

together in a common population then we might want to take a definition of evolution as the change

in allele frequencies over time. For this, we will suppose that the possible x come from a finite set

A and the total population is N =
∑
x∈ANx, Now, we can define the frequency or proportion of

x in the population as px = Nx/N and look at its time dynamics:
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ṗx =
d

dt
(
Nx
N

) (6.3)

=
Ṅx
N
− NxṄ

N2
(6.4)

=
wxNx
N

− Nx
N

∑
x∈A wxNx

N
(6.5)

=
Nx
N

(wx −
∑
x∈A

wx
Nx
N

) (6.6)

ṗx = px(wx − 〈w〉) (6.7)

where I used the definition of wx from Equation 6.2 and defined 〈w〉 as the average fitness over the

whole population. The final Equation 6.7 is the replicator dynamics, which is the central object of

study for evolutionary game theory [211, 146, 78]. Since nothing demands that wx is a constant,

and since the proportions are of such interest, it is natural to consider each wx as its own function

of p where p ∈ ∆A is a vector of the px values for each x ∈ A. This makes fitness into a mapping

wx : ∆A → R from the simplex over the set of all types A to a fitness value. This is what EGT

does, converting fitness from a scalar to a function and calling that mapping from type to fitness

function a game. In the special case of wx that are linear in p – that is when wx(p) =
∑
y∈AGxypy

– we summarize the mapping of type to fitness function by the game’s payoff matrix G = [Gxy].

By moving from fitness landscapes to games, I have had to extend the mathematical category

of fitness from a scalar (wx : R) to a function of proportion (wx : ∆A → R). The questions

remains: what is the conceptual category of fitness? To answer this question, we need to turn to

the philosophy of biology. And from the two answers this question, we will also see two different

ways to answer central questions about evolutionary games, like: what are the players? what are

the strategies?

6.2 Token fitness vs type fitness

In the philosophy of biology, there are at least two competing philosophical interpretations for what

is the conceptual category (or ontology) of fitness: token fitness vs. type fitness [1]. Explaining

the difference between them requires a brief philosophical diversion.

There are only twenty-six letters in the English alphabet, and yet there are more than twenty-six

letters in this sentence. How do we make sense of this?

Peirce [172] introduced the type-token distinction to make sense of sentences like the above.

Types are abstract descriptive concepts, while tokens are objects that instantiate concepts. This
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is a bit of an imprecise definition, so an example might be more useful: the are twenty-six letter

types in English but more than twenty-six letter tokens occurred in this sentence. To give a less

linguistic example: I – the writer of this thesis – am a token of the writer type. At the time of

writing, I am also a token of the DPhil student type. More relevant to biology: I am a token of

the human type; and I am a token of the brown-eyed type; and – at the time of writing – I am a

token of the bearded type.

A bit more generally, specific cells or organisms are tokens, while a property shared by one or

more cells or organisms defines a type. This distinction between types and tokens translates to

two conceptions of fitness. Here, I want to focus on the top level of the Abrams [1] taxonomy of

fitness concepts: the distinction of token fitness vs type fitness.

• Token fitness concepts attribute fitness as a property of a particular individual organism:

“token fitnesses reflect an individual’s complete set of genes, heritable and non-heritable

phenotypic properties, and any details of surrounding environmental variations that can

affect eventual reproductive success or success of descendants” [1]. It is the way an agent-

based modeler might conceptualize fitness: an attribute of each individual agent, something

that might be shaped by interactions with other agents and the environment but that ‘resides’

in the individual agent. Some examples include number of offspring, reproduction time (like

time from mitosis to mitosis), or probability to reproduce.

• Type fitness concepts attribute fitness as a property of a type. This is closer to how a popu-

lation geneticist conceptualizes fitness: an attribute of a genotype or phenotype which might

be instantiated in many individual organisms. Type fitness is the quantity that describes the

measured changes of the type in the population. A classic example in microscopic systems

would be population doubling time or growth rate.

Token fitnessess are sometimes also called individual fitnesses [203], or organismic fitnesses [175].

I prefer the token terminology to avoid potential confusions of the token vs type fitness distinction

as an individual vs group selection distinction. The two distinctions are independent of each other.

Type fitnesses are more commonly known as trait fitnesses [203, 175]. I prefer the terminology of

‘type’ versus ‘trait’ because I feel that traits have a mixed metaphor as both a ‘container’ of tokens,

and with tokens as a ‘container’ of traits. I think that this ambiguity is considered by others as

a feature, not a bug of traits. But with types such ambiguity is absent. Although a token can be

of many types, it is less natural to think of a token as a ‘container’ of types. Unfortunately, some

common uses of ‘genotype’ and ‘phenotype’ have swayed this thinking of a token as “having” a

genotype or phenotype, so some confusion will remain.
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6.2.1 Type fitness as an abstract statistic over tokens

It may be helpful to highlight the difference between the token vs type interpretations through an

analogy with physics. The setting of statistical mechanics defines properties like kinetic energy

for individual molecules and thus it mirrors what I am calling the reductive view based on token

fitness. Thermodynamics defines properties like temperature for ensembles of molecules and thus

it mirrors what I am calling the effective view based on type fitness. It simply doesn’t make sense

to talk of the temperature of an individual molecule. Of course, in simple models like the ideal gas,

there is a simple correspondence between the reductive and effective views (or token and type):

temperature is just mean kinetic energy. But this is not always the case for more complex models.

In biology, the analogy of an ideal gas would be an unstructured (inviscid) population. Here, the

effective fitness of a type is just the average token fitness of the individuals of that type. Think of

an idealized microbial experiment where the population doubling time (type fitness) is the average

reproduction time – mitosis to mitosis – on the individual cells (token fitness). But this ideal case

seldom happens in nature. In general, there are many ways, like recombination systems, spatial

subdivision, and admixture, in which structured populations depart from the idealized panmixis or

inviscid population. This can be very relevant to how we interpret games, as I discuss in Chapter 8

in the context of spatial structure.

Of course, type fitness is generally a consequence of the interactions of the various tokens. As

such, we can think of a microscopic experiment as a physical implementation of ‘some statistic’

on tokens. However, this statistic might not necessarily be on just token-fitness but on tokens and

their interactions more generally. For example – and as I discuss in more detail in Chapter 8 –

it might take into account the distance between and location of tokens in some spatial structure.

More importantly, this statistic might be difficult to reverse engineer and replace by a simple

formula.

Computer science can help us make sense of this.

For a computer scientist, an abstraction is a way to hide the complexity of computer systems.

It is a way to make programs that can be used and re-used without having to re-write all the

code for each new application on every different computer. It is in this sense that an algorithm

is an abstraction of the actual sequence of bit flips that carry out the physical processes that is

computation. To turn it around: the physical process carried out by your computer is then an

implementation of some abstract algorithm. Abstraction and implementation are in some sense

dual to each other.

Abstract objects or processes are multiply-realizable by a number of concrete objects or pro-
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cesses. The concrete objects might differ from each other in various ways but if the implementations

are ‘correct’ then the ways in which they differ are irrelevant to the abstraction. The abstraction

is less detailed than the implementation. To many researchers, less detailed means less particular

details about the experimental system being modelled. From this perspective, it might seem like

connecting to experiment must always make a model less abstract. In this chapter and the next,

I will show that this is not always the case.

The act of measurement itself can be a way to abstract [92]. This is what is achieved with

phenomenological or effective theories. For the experimenter, type fitness abstracts over the com-

plexities of population structures (i.e. evolutionary algorithm) that we do not know how to model

or measure explicitly. It is nature that figures out the particular computation that transforms

token fitness into type fitness and we do not need to know it once we are working at the level of

abstract type fitness. If our questions can be expressed at the level of types and the error generated

by this abstraction is sufficiently low, then this approach never needs to explicitly reference tokens

at all. In such cases, the abstract measurement can be enough for prediction.

It is important to note that I am not advocating for either the token or type conception of

fitness as the “correct” or “true” view. Rather, I think that the two views correspond to what

Maynard Smith [147] described as “two kinds of mathematical or formal theory that one can make

in science.” When we think about evolutionary games in terms of tokens, we get reductive games.

And when we think about evolutionary games in terms of type, we get effective games. These

are two different modes of thinking. For Maynard Smith [147], “most scientists think in one of

those modes, but not both.” Many phenomena in science can be profitably described from either

(or both) perspectives. However, in my experience, the type view of effective games is under-

represented in the current literature on evolutionary game theory. Hence, in this chapter I will aim

to convince evolutionary game theorists to spend more time thinking about and – perhaps more

importantly – measuring effective games using the techniques I develop in Chapter 7. I also think

that the type-based effective view of games matches the ontology of the basic terms of economic

game theory a bit more closely, as I will now discuss.

6.2.2 Two analogies to economic game theory

In economic game theory, the concepts of player, strategy, and game are intertwined but relatively

straightforward. Players use a rational decision process to select strategies which are then mapped

by the rules of the game to payoffs – the utility given to the players. Or, as I say more concisely in

the first column of Table 6.1: utility is given to a player based on its strategy, which results from

a rational decision process carried out by the player. All of this is summarized as the game. But,
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Economic game theory Evolutionary game theory

Utility Fitness

is given to a is a property of a is a statistical summary property of a
Player Token organism Type-structured Population of organisms

based on its based on its based on the population’s
Strategy Phenotype (pure strategy) Distribution of phenotypes (mixed strategy)

which results from which is which results from
Rational choice Fixed from birth & heritable Replicator dynamics

all summarized as a all summarized as a all summarized as an
Game Reductive Game Effective Game

Table 6.1: Defining evolutionary game theory by two different analogies to economic game theory.

how does this classic picture translate to evolutionary games?

In this chapter, I will provide two different interpretation of terms like players, strategies,

decision process and games in the evolutionary setting. These are the reductive and effective views

of evolutionary games. By starting with these two different readings of fitness in evolutionary

theory as analogs for the economic game theoretic concept of utility, we end up with different

biological interpretations for the key game theoretic terms. If we start with token fitness then

the summary of these interpretations is the reductive game. The reductive view is more useful to

computational modelers, and I summarize it in Section 6.3. If we start with type fitness then it is

the effective game. The effective view is more useful to experimental biologists and I summarize

it in Section 6.4. Both of these views are summarized and contrasted in columns two and three

of Table 6.1. It is important to note that the two kinds of games provide different answers to

questions like: who or what is the players? what are the strategies? These questions will be

answers in Section 6.3 for reductive games and Section 6.4 for effective games.

To make concrete the distinction between the reductive and effective views of games, I will

give several examples of how replicator dynamics can be realized and interpreted from each per-

spective. In each case, I will give an example in expanding populations (Sections 6.3.2,6.4.1) and

non-expanding populations (Sections 6.3.1,6.4.2). The reductive implementations of replicator dy-

namics that I highlight in Sections 6.3.1 and 6.3.2 are well known and the effective implementations

in Sections 6.4.1 and 6.4.2 are new but obvious. My primary contribution is in showing these im-

plementations together to show the multiple realizability of evolutionary games and to highlight

how much the implementations differ in their ontological grounding. Since the grounding of the

effective games perspective is unusual and new to the EGT literature, I will use Sections 6.5 and

6.6 to discuss some tricks and pitfalls in making sense of effective games. Finally, in Chapter 8, I

will discuss how to translate between the reductive and effective interpretations in the special case

of spatial structure.
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6.3 From token fitness to reductive games

Maynard Smith [147] viewed himself as a “microscopic man” and felt more at home with reductive

models or “microscopic theory” where “you try to explain the behaviour of something in terms of

its components [i.e tokens] and the way they interact.” Many evolutionary game theorists followed

in his footsteps, especially computational modelers who like to think in terms of simulations and

agent-based models and often take fitness as a property of an individual organism [2]. In that

case, we can define a player as an organism that receives a payoff from local interactions that

happen between pairs of organisms (or more for multi-player games). The summary of this local

interaction is what I would call the reductive game.

In the most common EGT setting, what the organisms do in the game is fixed by their genes.

Under this reductive interpretation players do not alter their strategies. This makes it easy to

present classic vs evolutionary game theory as two extremes on the spectrum of decision making.

In classic game theory, players are unbounded rational decision-makers. In evolutionary game

theory, players are the most bounded possible: they make no decisions at all; their behaviour

is genetically fixed. Or, as I say more awkwardly in the second column of table 6.1: fitness is

a property of an individual token organism based in its phenotype, which is fixed from birth

and heritable. All of this is summarized as the reductive game. The proportion of agents in

the population is then updated according to an evolutionary process like replicator dynamics.

Of course, it is possible to consider models of minimal cognition between these two extremes of

fixed-from-birth and unbounded-rationality [20, 149]. I have previously done so by extending the

genotype-to-behaviour map with behaviours conditioned on arbitrary observed tags [200, 107, 109,

116, 72] or based on subjective perceptions of game payoffs [114]. But a general discussion of this

is outside the scope of this thesis.

In this section I will discuss how two different realizations of reductive fitness can both imple-

ment replicator dynamics. In Section 6.3.1, I will focus on fixed population sizes with fitness as

probability to reproduce. In Section 6.3.2, I will consider exponentially growing populations with

fitness as number of offspring. By providing these two different reductive realizations of replicator

dynamics, I hope to make the concept of reductive games clearer by example.

6.3.1 Moran: fitness as probability to reproduce

In a Moran process [154, 210], we imagine that a population is made up of a fixed number N

of individuals. An agent is selected to reproduce in proportion to their game payoff, and their

offspring replaces another agent in the population, chosen uniformly at random. This gives us a
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very clear individual account of fitness as a measure of the probability to place a replicate into the

population.

Traulsen, Claussen, and Hauert [216] wrote down the Fokker-Planck equation for the above

Moran process, and then used Ito-calculus to derive a Langevin equation for the evolution of the

proportions of each strategy pk. The fluctuations in this stochastic equation scale with 1/
√
N and

so vanish in the limit of large N . This reduces them to a deterministic limit of the replicator

equation in Maynard Smith form [146], with the fitness functions as the payoff functions:

ṗk = pk
wk − 〈w〉
〈w〉

(6.8)

where 〈w〉 is the average fitness and the extra condition of 〈w〉 > 0 is introduced.

Alternatively, we might be interested in directly getting the Taylor form [211] of replicator

dynamics:

ṗk = pk(wk − 〈w〉) (6.9)

The Maynard Smith and Taylor systems of equations differ only by dynamic time rescaling and

thus have the same fixed points, orbits, and paths. If we only care about this in our analysis then

we can use the equations interchangeably. But Traulsen, Claussen, and Hauert [216] also show

how to achieve the Taylor form directly, too. Instead of birth-death, they consider an imitation

process:

1. Two agents are selected individually uniformly at random.

2. If the payoff of the first individual is w1 and the second is w2 then the first copies the second

with probability p = 1
2 + s

2
w1−w2

∆w where ∆w is the maximum possible gap in the payoff of

two agents in the model.

With this version of the Moran process, Traulsen, Claussen, and Hauert [216] get the Taylor form,

with the fitness as payoff. They are not the first to derive the Taylor form replicator equation

from imitation processes. In fact, Schlag [192] went further by showing that with the proportional

imitation rule (only copy those that have higher payoffs, in proportion to how much higher the

payoff is), you not only get the Taylor form replicator equation (in a large population limit), but

also that this local update rule is optimal from the individual agent’s perspective in certain social

learning settings.
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6.3.2 Exponential: fitness as number of offspring

One of the biggest difference between ecological modeling in micro- vs. macro- organisms is that

macro-organisms seldom have the opportunity to undergo exponential growth; they are almost

always at carrying capacity. That is one of the reasons that the Moran process model is so popular

(although it is not the only choice of model for fixed population sizes). But what if we want to

model this ecological difference – the fact that the total population size grows or that the cell

density in the Petri dish changes?

Population size does not have to be constant for evolution to implement replicator dynamics.

Consider – as Taylor and Jonker [211] did – m types of cells with N1, ..., Nm individuals with each

individual of type k leaving wk offspring for the next generation. As before, these offspring numbers

wk could be functions of various other parameters. The population dynamics are then described

by the set of m differential equations: Ṅk = wkNk for 1 ≤ k ≤ m. Now, with N = N1 + ...+Nm,

as in Section 6.1, we can look at the dynamics of pk = Nk/N :

ṗk =
Ṅk
N
− NkṄ

N2
(6.10)

=
wkNk
N

− Nk
N

∑m
i=1 wiNi
N

(6.11)

=
Nk
N

(wk −
m∑
i=1

wi
Ni
N

) (6.12)

= pk(wk − 〈w〉) (6.13)

which is just the replicator dynamics. If the wk are functions of proportions then replicator

dynamics can perfectly describe an exponentially growing population. It is important to note that

although the mathematics here and in Section 6.1 are identical, the ontologies are not. Here I

provided a specific interpretation of wk as the number of offspring left by each agent of type k,

while in Section 6.1 wx was an abstract quantity that could be implemented in any fashion. The

only reason that wx in Section 6.1 is often called “per capita growth rate” is due to this particular

implementation, via the number of offspring, being popular.

6.4 From type fitness to effective games

In contrast to Section 6.3, fitness does not have to be defined as a property of individual organisms.

An alternative perspective is to see fitness as defined only as a summary statistic or emergent

property of types. This is the perspective that makes the most sense when operationalizing fitness
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in microscopic systems; especially when using typical fitness measures like growth-rates. In that

case, the player is the type-structured population that receives the payoff of fitness. The game

then becomes the macroscopic coupling between types implemented by microscopic agents. It can

even be misleading to call this coupling an “interaction” since that suggests something too active

and direct; as I show in Section 6.6, the coupling could be as indirect as two types feeding on a

single resource in batch culture. This population-level description is what I call an effective game.

Given its roots in operationalization of microscopic systems, the effective games can be measured

directly and we recently developed a game assay for this purpose [119] that I discuss in Chapter 7.

As with other effective theories [230], effective games can serve as a bridge between theory and

experiment.

The effective games perspective has some curious consequences:

1. Since the players are type-structured populations, the types of organisms – i.e., behaviourally

identical classes of organisms – are the strategies. The distribution of phenotypes in the pop-

ulation is then interpreted as a mixed strategy. This is in sharp contrast to the reductive

games approach, where a mixed strategy would be a stochastic ‘choice’ by individual organ-

isms (either during their life or, in the case of something like bet-hedging, at birth). From

the effective games perspective, it is the population as a whole that is the player. And the

population is neither all type A nor type B but a mixture. Thus, in the inviscid (i.e., not

spatially structured) case, for example, when two agents meet they might be type A and they

might be type B, and we can interpret their frequencies in the population as probabilities

of each pure strategy (although see Chapter 8 for limits to this particular interaction-based

interpretation).

2. The player is not static but carries out a ‘decision process’ specified by the rules of the

evolutionary dynamics. This is usually described by the replicator equation. In other words,

the mixed strategy encoded the proportion of types is (deterministically) updated according

to the replicator equation. Make what you will of the correspondence between replicator

dynamics and Bayesian inference, reinforcement learning and other forms of rational decision

making [22, 12].

To me, this effective games perspective seems like both a closer correspondence to the aspirations of

economic game theory and easier to link to experiment than the reductive perspective of Section 6.3.

To summarize, as in the third column of table 6.1, this perspective is that: fitness is a statistical

summary property of a type-structured population based in its distribution of phenotypes, which

is updated according to replicator dynamics. All of this is summarized as the effective game.
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What does this mean for “cells are players”? For the reductive game, each individual cell is a

player that follow a fixed strategy. For the effective game, the population of cells is a player and

each cell type is a strategy. As with the reductive games in Section 6.3, in the effective case there

are many ways to implement replicator dynamics from different type definitions of fitness. I go

over two examples in this case, one for growing populations where changes in population size can

be measured (Section 6.4.1) and one for more static populations where only changes in frequency

can be measured (Section 6.4.2).

6.4.1 Replating: fitness as fold change

Consider the following idealized experimental protocol that is loosely inspired by Archetti, Ferraro,

and Christofori [9] and the E. coli Long-Term Evolution Experiment [126, 232, 185, 102]. We will

follow these steps:

E1: take a new petri dish or plate;

E2: fill it with a fixed mix of nutritional medium like fetal bovine serum;

E3: put a known number NI = N I
1 + ...N I

m of m different cell on the medium (on the

first plate we will also know the proportion of types in the mixture);

E4: let them grow for a fixed amount of time ∆t which will be on the order of a couple

of cell cycles;

E5: remove the cells off the medium and measure the final numbers NF := NF
1 +...NF

m;

E6: return to step (E1) while selecting NI cells at random from the ones we got in

step (E5) to seed step (E3).

From comparing steps E3 and E5, we can get the experimental population growth rates (or fold

change) as:

wk :=
NF
k −N I

k

N I
k∆t

(6.14)

this can be rotated into a mapping NI 7→ NF given by NF
k = N I

k (1 + wk∆t).

From defining the initial and final population sizes N{I,F} =
∑m
k=1N

{I,F}
k , we can compare

the initial and final proportions of each cell type pIk =
NIk
NI

and

pFk =
NF
k

NF
= pIk

1 + wk∆t

1 + 〈w〉∆t
(6.15)

where 〈w〉 =
∑m
k=1 p

I
kwk is the average fitness.
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So far we were looking at a discrete process. But we can approximate it with a continuous one.

In that case, we can define pk(t) = pIk, pk(t + ∆t) = pFk and look at the limit as ∆t gets very

small:

ṗ = lim
∆t→0

pk(t+ ∆t)− pk(t)

∆t
(6.16)

= lim
∆t→0

pIk
∆t

(
1 + wk∆t

1 + 〈w〉∆t
− 1) (6.17)

= lim
∆t→0

pk
wk − 〈w〉
1 + 〈w〉∆t

(6.18)

= pk(wk − 〈w〉) (6.19)

We recover replicator dynamics as an explicit experimental interpretation for all of our theoretical

terms.

Note that I did not make any assumptions about whether things are inviscid or spatial; whether

I am talking about individual or inclusive fitness; or, whether we have growing populations in log

phase or static populations with replacement. All of these microdynamical details are simply

buried in the definition of experimental fitness. More importantly, I provided a precise description

of how we will measure this quantity. This allows me to hide the details of microdynamics inside

of how we measure.

If we are able to peek inside the system more, for example, as I do with time-lapsed microscopy in

Chapter 7, then we can also replace the fold-change of Equation 6.14 by more specific measurements

of fitness like inferred growth rates. An advantage is that the goodness-of-fit of exponential models

can provide a good estimate of the error associated with these measurements. But the cost is a

slightly more specific set of assumptions on the microdynamics of our system. In particular, I

should modify E4 to include a check that ∆t is short enough to keep the population in growth

phase. However, since many experimental models can lead to transient exponential growth curves

for various microdynamic implementations, these assumptions still do not have to be as stringent

as the definitions in Section 6.3.2. I discuss this in more detail in Section 7.2.1.

6.4.2 Measuring the gain function directly

We do not necessarily need to measure separate fitness functions for each cell type, or consider

populations that change in total size. It is more important to know the fitness differences, which

we can measure directly instead.

Suppose the proportion of cell line A in a mixture is p, with cell line B making up 1−p, and the
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fitnesses of the cells are wA(p) and wB(p), respectively. Then the replicator dynamics are given

by:

dp

dt
= p(1− p) (wA − wB)︸ ︷︷ ︸

gain function

(6.20)

To summarize all of the evolutionary dynamics, we just need to measure the gain function.

Conceptually, the gain function is the increase in growth rate from ‘switching’ from type A to

B (or more precisely: the type-structured population switching between the strategies that those

types implement) with p held constant. Mathematically, the gain function between types A and

B is defined as the difference between the fitness functions of the two types (wA − wB). For the

theoretical importance of gain functions, see Peña, Lehmann, and Nöldeke [174] and Kaznatcheev

et al. [118].

To directly measure these functions, I will use a simple calculus trick. Consider the log-odds

s = ln p
1−p , then:

ds

dt
=
dp

dt
(
1

p
+

1

1− p
) =

dp/dt

p(1− p)
= wA − wB (6.21)

By looking at the log-odds of p instead of just p, we have ‘factored away’ the logistic growth

part of the equation. Now, to measure the gain function, we just have to measure the derivative

of s. Unfortunately, experimentalists do not have a derivative detector in the lab, so we have to

approximate the derivative by looking at the change in s over a short period of time.

In the case of the basic replating experiments we have a natural discretization of time: pin can

be the proportion of type-A cells at the start of our experiment, and pout can be the proportion of

type-A cells when we replate. We can then run the experiments for several initial values pin and

plot the results as ∆s = ln pout
1−pout − ln pin

1−pin versus pin. This graph is the gain function.

Here we run into the important question of “how short is short enough?” that I discuss in a

concrete case in Section 7.2.1. If we run the experiment for too short of a time then the change in

p will be overwhelmed by the measurement noise, but if we run for too long before measuring pout

then it does not make sense to say we are measuring the derivative at a particular time.

Since we are considering experimental data, it is important to look at the errors associated with

our measurements. I do not mean the variance between different runs in different Petri dishes,

although that is also important, but the accuracy of the proportions of our initial seeds and the

precision of our measurements. For example, if I measure length with a ruler that has millimeter

markings, I cannot say that I have measured the length x to better than x ± 0.5 mm. The case
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is similar for these studies. Each experimental set up will serve as a different ruler, and we will

need to do the metrology for each. This will be a big focus in Chapter 7, but I also want to touch

briefly on it here.

The reason I want to discuss error explicitly is that ∆s amplifies the error in pin, pout and does

so in a nonlinear fashion. There are several ways we could propagate the errors from p to s, but

as an estimate:

σ∆s =

√
(
∂

∂pin
∆s)2σ2

pin + (
∂

∂pout
∆s)2σ2

pout (6.22)

= σp

√
1

p2
in(1− pin)2

+
1

p2
out(1− pout)2

(6.23)

where σp is the error on p and σδs is the error on our gain function.

So the error is amplified by 4
√

2 near pin = pout = 0.5 and the amplification increases as

the proportions approach 0 or 1. For example, for pin = pout = 1/m and large m, it becomes

approximately a factor of m
√

2. Of course, each experimental set up will serve as a different ruler,

and we will need to do the metrology more carefully for each.

6.5 Choosing units of size for populations

It is important to note that populations cannot be defined arbitrarily. To have biologically relevant

type-structured populations, we need to have some natural or experimental boundary (sometimes

spatial, sometimes conceptual, sometimes historic or energetic) to keep the population together.

So here I follow Millstein [152] and take a population as a collection of types held together by a

struggle for existence.

Once a population is defined, it is also important to reflect on the units in which the sizes of

it and its types will be measured. So far, we have probably imagined populations as numbers of

discrete agents: individuals, organisms, or cells. But what is so special about discrete agents? Or

to restate in the context of microscopic systems like cancer: what is so special about the number

of cells? In this section, I want to question the reasons that microscopic biology tends to focus on

individual cells (at the expense of other choices) as basic atoms.

Let us look at what we could mean by ‘size of population’. The obvious definition is number of

cells, and if all we did was in silico simulations and token fitness then it is the definition we could

stick to. Especially for agent-based models, it is very tempting to have cells as your agents and

building everything up around them. But consider two populations that have the same number of
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cells and everything else is equal, except ...

1. ... the cells in the first population are metabolically twice as active as cells in the second

population. In this case, the more active cells can easily strain their environment more,

as they use more resources to fuel themselves. If your limiting resource in the petri dish

is growth medium then the more metabolically active cells will consume more of it. The

extreme case of this is cells that are completely inactive or even dead. This does not come

up as much in simulation, since we can just cleanly remove dead agents but it can matter

in experiments. With slower metabolic activity, the cell becomes less of an effect not only

on its own future, but also on other cells it interacts with – for example, by moving around

less or releasing fewer cytokines and thus interacting with fewer other cells. In this case, the

more natural set of physical units might be the power consumption in terms of watts-used

or ATP-used. This might be more compatible with the metabolic theory of ecology [23].

2. ... the cells in the first population are twice as big as cells in the second population. In the

case of cancer, the tumor corresponding to the more voluminous population would be much

more burdensome to the patient. In fact, tumor burden is often measured and reported as

volume in x-ray or other imaging. The number of cells in the tumor is then inferred from

these volumetric measures by assuming (or measuring outside the body) the size of a typical

cancer cell. From the point of view of games mediated by things like diffusive factors or

cell-cell contact, the bigger cells will have more area to absorb/release factors or to contact

other cells. If we are working in vitro, larger cells also exhaust the limiting factor of free space

quicker than small cells. For example, the importance of area has come up in thinking about

prostate cancer metastases to the bone [6]. Osteoclasts and osteoblasts take up drastically

different amounts of area on the bone, and they are only of significant consequence to the

model if they are in contact with the bone (else they are not remodeling it). Area-On-Bone

becomes the important variable here. On top of this, size feeds back into the first point, with

larger cells usually doing more things metabolically and in terms of other activity. In this

case, the more natural set of physical units might be area-covered.

Of course, we could try to express the above in terms of individual cells by converting back

and forth between numbers of cells and watts-used or area-covered. Practically, this would mean

finding a conversion factor which amounts to a measure of how much power or area a typical cell

uses. But in doing so, we have swept some amount of heterogeneity under the rug – after all, each

cell takes up a different amount of space or uses a different amount of energy, especially when facing

new circumstances like chemotherapy – and it is not clear what useful thing we got in return. But
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without individual cells to ground us, reductionist story telling becomes more difficult; something

that can be both a plus or a minus:

On the plus side, it is hard to imagine how 10 watts-used by cancer interacts with 10 watts-

used by fibroblasts, instead we are forced to make these measurements experimentally. Since these

measurements are almost always at the level of populations, we do not feel a need to make sense

of them in reductionist terms of how a single watt-used interacts with another watt-used. You

might have noticed that even the word ‘interacts’ felt awkward in the last two sentences. Watt-

or area-use invite us to recognize the importance of both the size of the other population and the

environment more generally. This makes it easier to notice evolutionary games with only indirect

interactions like those I discuss in Section 6.6. On the minus side, these effective games, more

abstract units, and operationalist perspective can hinder the imagination, and it can often become

more difficult to explain the work or to design new experiments.

6.6 Effective games without direct interactions

It is important to not over-interpret effective games. The effective game is an (ecological) inter-

action in an abstract sense, but this abstract sense might not correspond to our intuitive ideas of

what constitutes interaction. This is what I want to explore in this section based on the ideal-

ized Petri dish model from Section 6.4.1. In particular, I will explore how what our measurement

abstracts over (and thus hides) can determine the effective game.

Let p be the proportion of type-A in the population, and y be the nutritional content of the

medium – normalized so that the most nutrient rich mix possible has y = 1 and distilled water

has y = 0. For each cell we will have some (analytic) feeding function fA(y) and fB(y) which

translates between the nutritional content of the medium and the organism’s fitness, such that:

ṗ = p(1− p)(fA(y)− fB(y)) (6.24)

It is important to note that fA and fB are functions of y and completely independent from

p. At this point, we might be tempted to stop by saying that since experimental step (E2) uses a

fixed mix of nutritional medium, we can just treat fA(y)−fB(y) as a constant and thus (excluding

the neutral case) we will always have the population converge to all-A or all-B depending on the

sign of the gain function. So we should expect to see no (non-trivial) evolutionary game dynamics.

This is the standard intuition behind Gause’ exclusion principle: two species cannot co-exist on a

single abiotic resource [71].

But stopping here would be a bit premature. The reason that we have to renew the medium
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on each cycle of this kind of experiment is because it gets consumed between the replating (as

opposed to say a continuous culturing in a chemostat where the media is actively maintained at a

constant level). Further, the rate of consumption might differ between the two cell types. Suppose

that each cell type consumes the nutrients at rate 2kA and 2kB , such that if yin was our initial

level of nutrients in step (E2) then our final level it step (E5) is yout = yin(1− 2kAp− 2kB(1− p)).

For simplicity, let me assume that the cell cycle is significantly slower than the metabolic cycle,

so that I can start working with the average consumption: 〈y〉p = yout+yin
2 = y(1−kB+p(kB−kA))

(where I relabeled yin by just y in the last equality).

Now, the dynamics become:

ṗ = p(1− p)(fA(〈y〉p)− fB(〈y〉p)) (6.25)

and suddenly our gain function is no longer independent of p. For this, it might be helpful to

switch to our prior notation by noticing that in this case w{A,B}(p) = f{A,B}(〈y〉p). Equation 6.25

is the main sleight-of-hand, but let’s take the trick to its conclusion.

Let us expand the gain function, noting that I assumed analytic feeding functions, so fA(y) =∑∞
n=0Any

n for some sequence {An} and similar for fB(y) but with {Bn}:

Γ(p) = fA(〈y〉p)− fB(〈y〉p) (6.26)

=

∞∑
n=0

(An −Bn)〈y〉n (6.27)

=

∞∑
n=0

(An −Bn)yn(1− kB + p(kB − kA))n (6.28)

=

∞∑
n=0

(An −Bn)yn

(kA − kB)n
(p− 1− kB

kA − kB
)n (6.29)

The last line is the power series of some analytic function Γ(p) with coefficients {Γn = (An−Bn)yn

(kA−kB)n }

around the point x0 = 1−kB
kA−kB . In particular, given any desired (analytic) gain function Γ(p), there

is some choice of feeding functions fA and fB (thus, their corresponding coefficients {An} and

{Bn}) and kA and kB such that the population follows identical dynamics. In other words, in this

experimental set up, we can recreate any evolutionary game dynamics without having the cells

interacting directly but just based on how they turn nutrition into reproduction. In particular,

we can implement games like Hawk-Dove to have co-existence of A and B on a single abiotic

resource, thus violating the competitive exclusion principle.

As an example, suppose you want to recreate an arbitrary cooperate-defect game [107, 108]
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(also see Section 8.1.1):

 1 U

V 0

 . (6.30)

In that case, you need to create the gain function of Γ(p) = U + p(U + V − 1) where U, V are

the game parameters. To achieve this, just pick any kA and kB such that 1 − kB = kB − kA; A0

and B0 such that A0 − B0 = U ; and A1, B1, and your initial nutrient concentration y such that

A1−B1

1−kB y = U + V − 1; for all higher An, n just have them equal to each other (for example by

setting them all to zero, giving you linear feeding functions).

Thus, simple effective games can hide not-so-simple and not-that-game-like evolutionary dy-

namics. In Chapter 8, I will discuss more drastic examples of the multiple-realizability of effective

games due to the effects of spatial structure. But first, I want to use Chapter 7 to expand on the

measurement process for effective games that I sketched partially in Section 6.4.1 and actually mea-

sure a game in a real experimental cancer system. We just need to remember to not over-interpret

the results.

6.7 Summary

By critically scrutinizing the concept of fitness in this chapter, I shifted our focus from fitness as

a scalar to fitness as a function. This fitness-as-a-function view is the foundation of evolutionary

game theory, and the main algorithm of EGT is replicator dynamics. As with many of the most

interesting algorithms in nature, replicator dynamics is multiply realizable. I gave examples of

four such realizations in Sections 6.3.1, 6.3.2, 6.4.1, and 6.4.2 with the main distinction between

them being whether they are based on token fitness (Section 6.3) or type fitness (Section 6.4).

The former give us reductive games and the latter give us effective games. Reductive games have

already proven to be a useful theoretical tool in cancer research [214, 213, 17, 115, 118, 226, 10,

188]. But to give an empirical grounding to evolutionary games in cancer, we have to shift to

thinking in terms of effective games. So in the next chapter, I will develop a game assay for

directly measuring effective games and use it to measure the games played by non-small cell lung

cancer.



Chapter 7

Game assay: measuring the

ecology of cancer

Tumours are heterogeneous, evolving ecosystems [151, 74], comprised of different types of neoplas-

tic cells that follow distinct strategies for survival and propagation [82]. The success of a strategy

employed by any single type of neoplastic cell is dependent on the distribution of other strategies,

and on various components of the tumour microenvironment, and the tumour’s population struc-

ture. As we saw in Chapter 6, an evolutionary game is the rule mapping the population’s strategy

distribution to the fitness of individual strategies. Previous work has considered games like Snow-

drift [66], Stag Hunt [131], Prisoner’s Dilemma [220, 219], Rock-Paper-Scissors [121], and

Public Goods [138, 8] alongside experiments. But many of the details of the complex biological

interactions that implement evolutionary games are experimentally inaccessible at the resolution of

cell-cell interactions required to specify reductive games. So prior work has focused on a two-track

approach. In the two-track approach, theory and experiment are done side-by-side and success

is judged in (an often informal) hypothesis-testing or model-selection perspective by looking at

agreement between the macroscopic output of a reductive theory and the experiment. If thought

of as a measurement then I would consider the two-track approach as an indirect measurement.

Here, for the first time, I combine these two parallel tracks into a single track by experimen-

tally operationalizing the effective game as an assayable hidden variable of a population and its

environment. Following Chapter 6, I define the effective game as the game played by an idealized

population that shows the same frequency dynamics as the experimental population under consid-

eration. Unlike the reductive games of the two-track approach, this effective game is defined as a

direct measurement of the experimental system by the game assay that I develop in this chapter.

137
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As such, I am not aiming to test EGT as an explanation. Instead, in line with the approach of this

thesis, I am defining a game assay to quantitatively describe the ecology of an empirical system in

the language of EGT.

In order to combine the two tracks of theory and experiment, it is important that both are

designed together. Since I developed the concept of effective games in Section 6.4 with microscopic

measurements in mind, it remains for this chapter to design the actual experiments to measure

the game or corresponding gain function. In both Sections 6.4.1 and 6.4.2, I introduced potential

experiments as a kind of “derivative detector”. More precisely: we measure a type’s fitness value

over a short enough time interval ∆t such that we can treat the measured value as if it was

measured instantaneously. This allows me to get experimental point-estimates for the value of the

fitness function. Since I am looking at fitness as a function (w : ∆A → R) from proportions (over

a set of types A) to a fitness value, the point-estimates we need to reconstruct the functions are

the outputs from different initial proportions.

Although not currently common in cancer biology, competitive fitness assays are a gold standard

for studying bacteria. In a competitive fitness assay, two cell types are seeded in a petri dish at a

known ratio (usually 1:1) and then the fitness of one or both types is measured. Typically, such

a competitive fitness assay is conducted with a single initial ratio of two competing cell types. I

define the experimental part of the game assay as the extension of the competitive fitness

assay to a series of different initial seeding ratios. For example, in the experiments of this chapter,

we seeded the wells with 8 different ratios of the R and P types (where R and P stand for resistant

and parental, and are described in Section 7.1): all-R, 9R:1P, 4R:1P, 3R:2P, 2R:3P, 1R:4P, 1R:9P

and all-P. All 8 of these initial conditions are then run in parallel for ∆t ≈ 5 days to get estimates

of fitness of both types for each ratio.

For the analysis part of the game assay, I plot the measured fitness values for each initial

proportion. In this simplest case of a linear game assay (that is the primary focus of this chapter,

with the exception of Section 7.12), I fit two linear functions to these measured values – one

function for each cell type. These are then fitness functions and they can be written in the form:

wP (p) = Ap+B(1− p) (7.1)

wR(p) = Cp+D(1− p) (7.2)

to get us the measured game payoff matrix

A B

C D

. Finally, this game can be represented as a
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point in a two dimensional game space spanned by the axes C −A and B −D (see Figure 7.5b).

The experimental procedure sketched above along with the mapping from its results to the final

game point is the game assay.

Although this gives the general idea of the game assay for measuring effective games, a number

of the steps require fleshing out for any specific experimental system. Hence, I use the rest of this

chapter to go through a concrete example of the first ever use of the game assay to measure the

Leader and Deadlock games between Alectinib-sensitive and Alectinib-resistant cell types in

non-small cell lung cancer. I have already published in the biology literature as Kaznatcheev et al.

[119], where further biological details can be found. The goal of this case study is to provide a

prototypical example for other scientists interested in applying the game assay. I go through all

the main steps of the game assay in the following sections:

7.1: Selecting the experimental model. In this case: two types of non-small cell lung

cancer cells, one that is Alectinib-sensitive (parental) and one that is resistant,

alongside four other environmental variables: the presence of absence of Alectinib

and the presence or absence of cancer associated fibroblast (CAFs).

7.2: Converting microscopy images – the raw output of the experiment – into measures

of fitness and also measuring the initial proportion of parental type (Section 7.2.2).

7.3: Summarizing the whole first step of the game assay from experiment to fitness

measures in a series of competitive fitness assays and visualizing all the data this

step produces in Figure 7.3.

7.6: Converting the series of fitness value point-estimates from Figure 7.3 into best-fit

fitness functions in Figure 7.4.

7.8: Converting the eight fitness functions into four games and plotting those four

games in the game space of Figure 7.5b.

7.11: Analyzing the fixed-point that is present in one of the four measured ecologies.

7.12: Generalizing the above procedure to non-linear fitness functions and checking

the robustness of the linear measurements.

As I go through the game assay for this non-small cell lung cancer case study, I also pause

occasionally to mention consequences or observations of interest to oncologists. I discuss these

notable consequences as early as possible in the analysis to show just how much or little of the

game assay is required to state them. The consequences and observations are:
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7.4: If we relied only on the monoculture experiments that are prevalent in cancer

research then they would have produced very misleading results, especially in

thinking about the cost of resistance.

7.5: The classic model of drug resistance, assumes that the resistant phenotype is

neutral or costly in environments where the drug is not present (outside of drug).

This is contradicted by the results of the competitive fitness assays in Figure 7.3,

challenging a common assumption in cancer modelling.

7.7: The fitness functions in Figure 7.4 suggests that there is commensalism between

parental and resistant cells (i.e., resistant cells benefit from the interaction with

the parental cells, without exerting positive or negative impact on them) that is

switched by the presence of CAFs (i.e., parental benefit from resistant without

positive or negative impact on resistant cells).

7.9: The games played by non-small cell lung cancer are Leader and Deadlock.

Neither of these games is studied in the existing mathematical oncology literature,

but as I show later in Chapter 8, they might be related to well-studied games like

Hawk-Dove and Prisoner’s Dilemma by inverting the population’s spatial

structure (see Section 8.4).

7.10: The Leader and Deadlock game are qualitatively different, and the addi-

tion of Alectinib or removal of CAFs switches the ecology from one game to the

other. This confirms the previously theoretical postulate of EGT in oncology: it

is possible to treat not just the player but also the game.

Thus, the non-small cell lung cancer system provides not only a good prototype for applying

the game assay but also gives us surprising new insights into oncology.

7.1 Experimental model: Alectinib resistance in non-small

cell lung cancer

In some sense, the choice of experimental system is arbitrary, and I could have developed the game

assay in any experimental system where accurate measurements of the population size over time

of two or more types is possible. Good initial candidates would be other microscopic experimental

systems in which frequency dependent fitness effects have been considered before, like: Escherichia

coli [121, 139], yeast [138, 66], bacterial symbionts of hydra [131], viruses [220, 219], breast can-

cer [142] and pancreatic cancer [8]. But given the interests and expertise of my experimental
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collaborators at the Moffitt Cancer Center and Cleveland Clinic, we chose to focus on non-small

cell lung cancer (NSCLC), cancer associated fibroblasts (CAFs), and Alectinib.

The EML4-ALK fusion, found in approximately 5% of non-small cell lung cancer (NSCLC)

patients, leads to constitutive activation of oncogenic tyrosine kinase activity of ALK, thereby

“driving” the disease. Inhibitors of tyrosine kinase activity of ALK (ALK TKI) – such as the

drug Alectinib – have proven to be clinically effective, inducing tumour regression and prolong-

ing patient survival [198, 177]. Unfortunately, virtually all of the tumours that respond to ALK

TKIs eventually relapse [197] – an outcome typical of inhibitors of other oncogenic tyrosine ki-

nases [63]. Resistance to ALK TKI, like most targeted therapies, remains a major unresolved

clinical challenge. Despite significant advances in deciphering the resultant molecular mechanisms

of resistance [88], the evolutionary dynamics of ALK TKI resistance remains poorly understood.

The inability of TKI therapies to completely eliminate tumour cells has been shown to be at least

partially attributable to protection by aspects of the tumour microenvironment [143]. CAFs are

one of the main non-malignant components of tumour microenvironment and the interplay between

them and tumour cells is a major contributor to microenvironmental resistance, including cytokine

mediated protection against ALK inhibitors [237].

To study the eco-evolutionary dynamics of these various factors, we studied the competition

between treatment-naive cells of ALK mutant NSCLC cell line H3122 – a “workhorse” for studies

of ALK+ lung cancer – and a derivative cell line in which we developed resistance to Alectinib –

a highly effective clinical ALK TKI [170] – by selection in progressively increasing concentrations

of the drug [43]. Throughout the Chapter, I will refer to the treatment-naive type/strategy as

‘parental’ and the Alectinib resistant type/strategy as ‘resistant’. We aimed to come to a quan-

titative understanding of how the evolutionary dynamics of parental and resistant strategies were

affected by clinically relevant concentrations of Alectinib (0.5µM; see [195]) in the presence or

absence of CAFs isolated from a lung cancer.

Cell lines: H3122 cell lines and primary lung cancer associated fibroblasts (CAFs) were obtained

from the Moffitt Cancer Center.CAFs were isolated as previously described in Mediavilla-Varela et

al. [150] and expanded for 3-10 passages prior to the experiments. The alectinib resistant derivative

cell line was obtained through escalating inhibitor concentration protocol, as described in Dhawan

et al. [43]. Alectinib sensitive parental H3122 cells were cultured in DMSO for the same length

of time, as the alectinib resistant derivate. In this sense, the ‘parental’ nomenclature is a bit

misleading since the parental and resistant strategies are cousins with a common H3122 ancestor.

But given that with respect to Alectinib-resistance. we can expect the parental line to better reflect
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that common ancestor, I think it is a reasonable nomeclature. As we read, we should just remember

that ‘parental’ is shorthand for “parental-like with respect to Alectinib-resistance”. I will discuss

this more in Section 7.5.1. In order to distinguish the two morphologically similar types under the

microscope, we added the genetic code for fluorescent marker proteins (i.e. GFP and mCherry) to

their genomes. We cultured both H3122 cells and CAFs in RPMI media, supplemented with 10%

fetal bovine serum.

Experimental set-up: Mixtures of parental and resistant H3122 cells were prepared at 8 dif-

ferent ratios: all-resistant, 9:1 resistant to parental, 4:1, 3:2, 2:3, 1:4, 1:9, and all-parental. For

each of the competitive fitness assays, 2,000 H3122 cells from the 8 mixtures were seeded with or

without 500 CAF cells in 50 µL RPMI media per well into 384 well plates. 6 wells used for each

resistant:parental ratio in each of the 4 conditions. 20 hours after seeding, Alectinib or DMSO

vehicle control (i.e. no drug), diluted in 20 µL RPMI was added to each well to achieve a clinically

relevant final Alectinib concentration of 500 nM/L [195]. Time-lapse microscopy measurements

were performed every 4 hours in phase-contrast white light, as well as green and red fluorescent

channels.

7.2 Measuring population sizes and fitnesses

Consider a well that is seeded with an initial population size N I
P of parental and N I

R of resistant

cells; total population sizeN I = N I
P+N I

R. LetNF
{P,R} be the population size of {parental,resistant}

cells after being grown for an amount of time ∆t. It is important to note, as I did in Section 6.5,

that it does not matter what units population size is measured in, as long as the measurement

is consistent between initial and final time, experimental condition, and interpretation. For this

experimental system, I used fluorescent area as a unit of population size measured from time-lapse

images via python code using the OpenCV package [97]. See Figures 7.3a,b,d,e for examples of the

image analysis.

Given a measure of population size, I can give an experimental definition of replicator dynamics

in the spirit of Section 6.4. Experimental growth rate can be defined in the standard way based

on fold change as:

w{P,R} :=
NF
{P,R} −N

I
{P,R}

N I
{P,R}∆t

(7.3)

this can be rotated into a mapping N I 7→ NF given by NF
{P,R} = N I

{P,R}(1 + w{P,R}∆t).

By defining the initial and final proportion of parental cells as p{I,F} = N
{I,F}
P /N{I,F}, we can
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find the mapping:

pF =
NF
P

NF
= pI

1 + wP∆t

1 + 〈w〉∆t
(7.4)

where 〈w〉 = pIwP + (1− pI)wR. This is the discrete-time replicator equation.

We can approximate this discrete process with a continuous one by defining p(t) = pI , p(t +

∆t) = pF and looking at the limit as ∆t gets very small:

ṗ = lim
∆t→0

p(t+ ∆t)− p(t)
∆t

(7.5)

= lim
∆t→0

pI

∆t
(

1 + wP∆t

1 + 〈w〉∆t
− 1) (7.6)

= lim
∆t→0

p
wP − 〈w〉
1 + 〈w〉∆t

(7.7)

= p(wP − 〈w〉) (7.8)

= p(1− p) (wP − wR)︸ ︷︷ ︸
gain f’n for p

(7.9)

Thus, we recover replicator dynamics as an explicit experimental interpretation for all of our

theoretical terms. Note that we did not make any assumptions about whether things are inviscid or

spatial; whether we are talking about individual or inclusive fitness; or, whether we have growing

populations in log phase or static populations with replacement. All of these microdynamical

details are buried in the above definition of experimental fitness. This allows us to focus on

effective games [111] and avoid potential confusions over aspects like spatial structure [100].

7.2.1 Better estimates of w: growth rate as fitness

The problem with the definition of w in Equation 7.3 is that it depends on just two time points,

and thus is not good for quantifying error. In our experimental system, we are able to peek inside

the system with time-lapse microscopy. This allows us to get more than just the initial and final

population sizes and replace fold-change by the more specific measurements of inferred growth rates

for w{P,R}. An advantage of this approach is that the goodness-of-fit of the exponential growth

model provides a good estimate of the error associated with each measurement of w. Thus, we are

able to quantify error within each well and not just between experimental replicates in different

wells with similar initial conditions.

We use the exponential growth rate from Equation 6.2 as our measure of fitness. Note that

this is a property of populations of cells, not of individual cells, hence it is a type-fitness. In order
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to minimise the impact of growth inhibition by confluence, we analyzed the competitive dynamics

during the first 5 days of culture, when the cell population was expanding exponentially. We

learned growth rate – along with a confidence interval – from the time-series of population size in

each well using the Theil-Sen estimator [212, 194]. Since the Theil-Sen estimator is a rank-based

median method (unlike least-squares, which is a numeric-based mean method), it is more robust

to noise and does not need to choose between a linear or log representation for computing the

error-term (since log transforms do not change rank orders). The robustness to rare but large-

magnitude noise is useful for our purposes because such errors do not reflect biological function

or noise but are more likely to be due to errors in image processing, for example in response to

sudden condensation on the well plate. See Figures 7.3c,f for examples of fitting.

Accounting for finite ∆t: The small time-step definition of the derivative can be thought of

as a way to approximate a function by local linearizations. It is why, for simulations, modelers

often use the discrete-time replicator dynamics to represent continuous-time replicator dynamics:

effectively using the discretization as a simple ODE solver/plotter. In the limit of ∆t going to 0,

this linearization recapitulates the function. Unfortunately in practice, our experimental system

cannot take the limit as ∆t goes to 0 because of a precision-accuracy trade-off. Accuracy increases

as ∆t decreases because the continuous dynamics is approximated by more and more, shorter and

shorter straight lines. But – from an experimentalist’s perspective – the precision decreases because

any measurement is noisy: if we measure growth rate over a shorter period of time then we are

less certain whether our measurement reflects reality or noise. For very short measurements, we

might get higher accuracy (assuming biological factors like time from seeding to adherence could

be ignored) but would have incredibly low precision (due to only one, two or three time points from

which to calculate growth rate). As we increase the time of the experiment, the accuracy might

decrease but the precision will tend to increase. This is a classic trade-off between random noise

(low precision) and systematic noise (linearization being progressively less accurate over larger

∆t). Since each of our growth rate measurements has an associated error term (see section 7.2),

we quantify the random and systematic noise together and propagate it throughout our analysis.

Given the biological constraints of our system, we judged that 5 days was a good trade-off point.

This will most likely be different for other experimental systems.

Given that the w{P,R} are defined over a finite range of time, we need to pick a particular

time-point to associate each measurement with. As is common for a discrete time process, we

attribute the value of the growth rate to the initial point. In particular, this means that when

we consider w{P,R} as a function of p, then the values of growth rate are attributed to the initial
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Figure 7.1: Evolutionary dynamics of proportion of parental cells versus time for com-
petition of parental vs. resistant NSCLC. Each line corresponds to the time dynamics of a
separate well. A line is coloured magenta if proportion of resistant cells increased from start (time
step 3 to 8) to end (time step 24 to 29); cyan if proportion of parental cells increased; black if
statistically indistinguishable proportions at start and end.

proportion of parental cells and not the final one. This customary choice is further reinforced by

the fact that we have a less noisy estimate of initial proportions of cells than of the final, and so

other definitions would lead to less precise measurements. Finally, this procedure can be viewed

as a series of standard competitive fitness assays, but with the initial ratio of the two types as

a varied experimental parameter. Thus, for consistency with both theoretical and experimental

literature, we associated the growth rates with the initial – more controlled – seeding proportion.

7.2.2 Proportions

There are two ways to approach seeding proportions, we can get them from the mixing ratios of the

experimental preparation or from the first images of microscopy. The former should be treated as

more reliable, since I have more confidence in the experimenter’s ability to mix two beakers of liquid

at specified ratios than in the complicated pipeline of microscopy and image processing. However,

the second approach is required if we want to look at the temporal dynamics of proportion during

the experiment.

Since raw population sizes have different units (GFP Fluorescent Area (GFA) vs mCherry

Fluorescent Area (RFA)), we converted them to common cell-number-units (CNU) by learning

the linear transform that scales GFA and RFA into CNU. Specifically, I take the initial seeding

numbers based on experimental mixing ratio as given and the GFA and RFA measurements as

noisy estimates of them. We can then learn the two parameters of systemic noise corresponding to

the slope and intercept of the linear regression of GFA or RFA data on experimental seeding count.

We can then interpret the slopes as the typical amount of GFP or mCherry fluorescence per cell

and the intercept as the media’s auto-fluorescence and zeroth-order errors in image processing. We

defined proportions based on this common CNU as p = NP /(NP +NR) where N{P,R} is the CNU
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size of parental and resistant populations. The transform of GFA and RFA into CNU is associated

with an error that is propagated to measures of p as σp. Thus, although we used 8 different ratios of

resistant to parental cells with 6 wells per condition seeded at each of the ratios, we do not average

over these 6 wells but associated each with its own proportion p± σp from the initial image. This

helps us control for systemic noise from field of view and our image processing algorithm. The

time dynamics of p can be seen in the insets of Figure 7.5b for DMSO and DMSO+CAF or in

Figure 7.1 for all conditions.

7.3 Fitness as growth rate vs experimental control param-

eters

Our overall dataset can be viewed as pairs of growth rates (one for the parental type/strategy

and one for the resistant type/strategy) measured across a nested set of experimental control

parameters. The outer nesting is by the four conditions corresponding to the presence or absence

of Alectinib or CAFs. The inner nesting is by initial proportion of parental cells. The rest of the

chapter is then organized around a series of figures that visualize and summarize this dataset in

various ways. More ambitiously, I call these visualizations and summaries the game assay.

The learned parental growth rate and resistant growth rate of each well are used as the y

coordinates in the monoculture experiments of Figure 7.2 and mixed culture in Figure 7.4 (along

with errors on the growth rate) and as the x and y coordinates of the main part of Figure 7.3.

Due to too much information content, the errors on the growth rates are omitted in Figure 7.3,

but they are shown explicitly as error-bars in Figure 7.4. Note that this means that each point in

Figure 7.2 and the main part of Figure 7.3 and each pair of points in Figure 7.4 (one magenta and

one cyan at the same x-position) correspond to one biological replicate, with the error term coming

from the confidence interval on the growth-rate estimate from the 30 time-series points that we

recorded for each biological replicate (see Section 7.2 on how this relates to the accuracy-precision

trade-off). Thus, each of the 6 wells corresponding to a given resistant:parental ratio (in each of

the 4 conditions) has its own independent growth rate with associated error. The wells are not

averaged together: each acts as its own data point (with noise) for later analysis (that propagates

the noise).

I will interpret the scientific content of these figures throughout the rest of the Chapter. In

particular, in Section 7.4, I will motivate Figure 7.3 by explaining why the monotypic data of

Figure 7.2 is insufficient for our purposes. And in Section 7.6 I will motivate Figure 7.4 as a

summary of the features of Figure 7.3 that are relevant to the game assay. But for now, let us
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focus a bit more on the form and not the content of the figures.

7.3.1 Figure 7.3 as map of analysis flow

Along with showing all the data, Figure 7.3 serves as a map to the analysis pipeline described in

Section 7.2. The subfigures can be understood in the following order:

[a,b,c,d]: Within each image from the series generated by time-lapse microscopy: identify the

fluorescent regions for GFP and mCherry and calculate their areas to serve as units of

population size (GFA and RFA).

[e,f]: For parental (mCherry measured in RFA) and resistant (GFP measured in GFA) plot the

population sizes from each image in the series on a semilog grid as population vs. time. Find

the slope of the two lines to serve as parental and resistant fitness.

[g]: Use the parental fitness as x value and resistant fitness as y value to plot each well as a

data-point according to the above process, and colour the point according to its experi-

mental condition (with opacity for initial parental proportion; see Section 7.6). For ease of

viewing: put a convex hull binding polygon around each well data-point dependent on their

experimental condition.

Given the complexity of Figure 7.3, it is tempting to ask for a simple summary statistic of the

data in the main figure. But it is not reasonable to ask for the “average” growth rate in Figure 7.3

because each point differs not only along the four experimental conditions of the environment, but

also along the micro-environmental conditions of the initial parental proportion (represented by the

opacity as explained in Section 7.6). Averaging over this information would be akin to assuming

that the growth rates are cell-autonomous (discussed in more detail in Section 7.4). It would be

attributing the variance in growth rates to noise instead of the independent variable or initial

parental proportion. As such, the game assay developed in the rest of the chapter can be viewed as

a method for summarizing Figure 7.3 when the underlying process is non-cell-autonomous. And the

games derived through Figure 7.4 and presented in Figure 7.5b can be interpreted as the summary

of the data in the main part of Figure 7.3.

7.4 Monotypic vs mixed cultures

To establish baseline characteristics, we performed assays in monotypic cultures of parental (Alectinib-

sensitive) and resistant cell lines with and without Alectinib and CAFs. From the time series data,

we inferred the growth rate with confidence intervals for each one of 6 experimental replicates
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Figure 7.2: Monotypic culture exponential growth rates for parental (cyan) and resistant
(magenta) cells in indicated experimental conditions. Confidence intervals on each experimental
replicate is from confidence on the estimate of growth rate for that single replicate according to
the Theil-Sen estimator. Comparisons between experimental conditions (of 6 replicates each) are
made using Wilcoxon rank-sum. In addition to conditions linked by lines with reported p-values,
conditions labeled by ’a’ and ’b’ are pairwise distinguishable with p < .005. In other words, parental
in DMSO is statistically different from parental in Alectinib, which is different from parental in
Alectinib + CAF and vice-versa (the ‘a’ label); and similar for DMSO + CAF vs Alectinib vs
Alectinib + CAF (the ‘b’ label).

in four different experimental conditions (total of 24 data points, each with confidence intervals),

as seen in Figure 7.2. As expected, alectinib inhibited growth rates of parental cells (DMSO vs

Alectinib: p < .005; DMSO + CAF vs Alectinib + CAF: p < .005), whereas the growth rate of the

resistant cells was not affected. And, as previously reported [237], CAFs partially rescued growth

inhibition of parental cells by Alectinib (Alectinib vs Alectinib + CAF: p < .005; Alectinib + CAF

vs DMSO: p < .005), without impacting growth rates of resistant cells.

But we did not limit ourselves to monotypic assays. Our experience observing non-cell-

autonomous biological interactions [142] and modeling eco-evolutionary interactions [18, 115, 118]

in cancer led us to suspect that the heterotypic growth rates would differ from monotypic culture.

Cell-autonomous fitness effects are ones where the benefits/costs to growth rate are inherent to

the cell: the presence of other cells are an irrelevant feature of the micro-environment and the

growth rates from monotypic cultures provide all the necessary information. Non-cell-autonomous

effects [142] allow fitness to depend on a cell’s micro-environmental context, including the frequency

of other cell types: growth rates need to be measured in competitive fitness assays over a range

of seeding frequencies. Hence, we continued our experiments over a range of initial proportions of

resistant and parental cells in mixed cultures for each of the four experimental conditions.

Figure 7.3 shows the resulting growth rates of each cell type in the co-culture experiments

for all experimental (colour, shape) and initial conditions (opacity is parental cell proportion).

In the heterotypic culture – unlike monotypic – CAFs slightly improved the growth rates of the

parental cells, even in DMSO. More strikingly, even in the absence of drug, resistant cells tend
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Figure 7.3: Coculture growth rates across four experimental conditions. (a-f) serve as a
sketch of the analysis procedure to produce the main subfigure (g); for more detailed discussion,
see Section 7.3.1
(a,b,c,d): In each experimental replicate at each time step, I quantify population size by fluores-
cent area of each cell type (shown: two different time points per well, from two different wells).
Together, 30 time-lapse microscopy images (one every 4 hours) from each replicate create subfigures
(e) and (f).
(e,f): time-series of parental and resistant population size (shown: two example wells).
With x-axis is time, y-axis is log of population size. Exponential growth rates (and confidence
intervals; omitted) were estimated for each well using the Theil-Sen estimator. These exponential
models are shown as solid lines and their slopes serve as the coordinates in (g). See Figure 7.4 for
growth rate confidence intervals and Section 7.2 for detailed discussion of growth-rate measurement.
(g): Each point is a separate replicate of a competitive fitness assay with initial proportion of
parental cells represented by opacity and experimental condition represented by shape (DMSO:
circle; Alectinib: square) and colour (no CAF: red; + CAF: blue). Each replicate’s x-position
corresponds to the measured parental growth rate and y-position for resistant growth rate; the
dotted black line corresponds to the line of equal fitness between the two types at x = y.
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to have a higher growth rate than parental cells in the same environment (i.e., with the same

proportion of parental cells in co-culture). This is evident from most DMSO points being above

the dotted diagonal line (y = x) corresponding to equal growth rate of the two types and quantified

in Figure 7.5b and further discussed in Section 7.9.

7.5 Cost of resistance

The classic model of resistance posits that the resistant phenotype receives a benefit in environ-

ments where it is exposed to the drug (in our case: Alectinib or Alectinib + CAF) but is neutral,

or even carries an inherent cost, in the absence of drug (in our case: DMSO or DMSO + CAF). For

example, experimentalists frequently regard resistance-granting mutations as selectively neutral in

the absence of drug, and the modeling community often goes further by considering explicit costs

like up-regulating drug efflux pumps, investing in other defensive strategies, or lowering growth

rate by switching to sub-optimal growth pathways [4, 82]. If we limited ourselves to the monotypic

assays of Figure 7.2, then our observations would be consistent with this classic model of resis-

tance. But in co-culture, we observed that resistant cells have higher fitness than parental cells in

the same environment, even in the absence of drug. This is not consistent with the classic model

of resistance. This higher fitness of resistant cells might not surprise clinicians as much as the

biologists: in clinical experience, tumours that have acquired resistance are often more aggressive

than before they were treated, even in the absence of drug.

7.5.1 Reductive vs effective definitions of resistance

As I described above, we observed that even in the absence of drug, resistant cells tend to have a

higher growth rate than parental cells in the same environment (i.e. proportion of parental cells

in the co-culture). A reductionist could rationalize our observations by saying that we actually

selected for two different qualities in our resistant line: (i) a general growth advantage, and (ii)

resistance to Alectinib.

This is a reasonable hypothesis, but it faces a few challenges. First, both parental and resistant

cells were evolved for the same length of time, with escalating dosages of DMSO for the former and

Alectinib for the latter (see Mediavilla-Varela et al. [150] and Section 7.1). Thus, (i) cannot be due

to just subculturing, but is somehow linked to drug. Second, there is no growth rate advantage of

resistant cells in monoculture (see Figure 7.2); the advantage is only revealed when parental and

resistant cells are cultured with a common proportion of parental cells. Finally, to even make the

distinction between (i) and (ii), one has to implicitly assume that resistance has to be neutral or
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Figure 7.4: Fitness functions for competition of parental vs. resistant NSCLC. For
each plot: growth rate with confidence intervals versus initial proportion of parental cells. This
is the same data, measured in the same way, as Figure 7.3. Cyan data points are growth rates of
parental cells, and magenta for resistant cells. Dotted lines represent the linear fitness function of
the least-squares best fit; fit error is visualised in Figure 7.5b. The black dotted line is the gain
function for parental (see Figure 7.5a), it is well below the y = 0 line in the Alectinib conditions
(indicating the strong advantage of resistance) and thus cut out of the figure. See Section 7.6
for more discussion and equations for lines of best fit, and Section 7.12 for alternative fits with
non-linear fitness functions.

costly by definition. This is putting the cart before the horse: it is assuming resistance is neutral or

costly before trying to measure if it is. For an oncologist, however, both (i) and (ii) would constitute

clinical resistance if they led to a tumour escaping therapeutic control, and thus both should be

a possibility in a reasonable definition of (clinical) resistance. By using a definition of clinical

resistance that is broad enough to capture both aspects, we can actually measure if resistance is

neutral, costly, or neither. In the case of our cancer system, we observe resistance that is neither

neutral nor costly in DMSO co-culture. This sort of ‘beneficial’ or ‘negative cost’ resistance should

be studied more closely in the theoretical models of mathematical oncology because I think that

it corresponds more closely to the sort of ruthless resistance that clinicians usually encounter.

7.6 Frequency dependence in NSCLC fitness functions

As I discussed at the start of the chapter, although not common in cancer biology, competitive

fitness assays are a gold standard for studying bacteria. But they are typically conducted with a

single initial ratio of the two competing cell types. However, in Figure 7.3, if we view the initial

proportion of parental to resistant cells as a variable parameter represented by opacity then we

can see a hint of frequency dependence in both parental and resistant growth rates. The goal of

this section is to show how to summarize this mass of competitive fitness as the fitness function

of evolutionary game theory. This is shown more clearly as a plot of fitness versus proportion of

parental cells in Figure 7.4.
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7.6.1 Lines of best fit as fitness functions

To measure the fitness functions we plotted fitness of each cell-type in each well vs seeding propor-

tion (p) of parental cells in Figure 7.4. The x-axis proportion of parental cells (p) was computed

from the first time-point: see Section 7.2 for an interpretation of this as a measurement of dp/dt

or as a series of competitive fitness assays. We estimated the line of best-fit and error on parame-

ters for this data using least-squares weighted by the inverse of the error on each data point (i.e.

weightp,w = 1/
√
σ2
p + σ2

w). This provides the error estimates on the line’s parameters that we use

later. The lines of best fit (with coefficients rounded to the thousandths for presentation) from

weighted least-squares are:

ŵDMSO
P = 0.025− 0.001(1− p) = 0.025p+ 0.024(1− p) (7.10)

ŵDMSO
R = 0.027 + 0.013p = 0.04p+ 0.027(1− p) (7.11)

ŵDMSO + CAF
P = 0.026 + 0.009(1− p) = 0.026p+ 0.035(1− p) (7.12)

ŵDMSO + CAF
R = 0.03 + 0.001p = 0.031p+ 0.03(1− p) (7.13)

ŵAlectinib
P = −0.01− 0.002(1− p) = −0.01p− 0.013(1− p) (7.14)

ŵAlectinib
R = 0.023 + 0.02p = 0.043p+ 0.023(1− p) (7.15)

ŵAlectinib + CAF
P = 0.005− 0.009(1− p) = 0.005p− 0.004(1− p) (7.16)

ŵAlectinib + CAF
R = 0.024 + 0.014p = 0.038p+ 0.024(1− p) (7.17)

7.6.2 Interpretable fitness functions

The above fitness functions are a bit difficult to interpret, so I will regularize them further by

restricting beyond linear fitness functions to focus on conceptually simple ones. In particular, let

us favour cell-autonomous functions over frequency-dependent ones (i.e. l0 regularization on the

fitness function coefficients) and let us favour coefficients that are shared between different S and

C in each wCS . This results in the following regularized fitness functions:
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wDMSO
P = 0.025 (7.18)

wDMSO
R = 0.025 + 0.015p (7.19)

wDMSO + CAF
P = 0.025 + 0.01(1− p) (or 0.03− 0.01(

1

2
− p)) (7.20)

wDMSO + CAF
R = 0.03 (7.21)

wAlectinib
P = −0.010 (7.22)

wAlectinib
R = 0.025 + 0.018p (7.23)

wAlectinib + CAF
P = 0.005− 0.009(1− p) (or 0.009(

1

2
− p)) (7.24)

wAlectinib + CAF
R = 0.025 + 0.013p (7.25)

Note that for both P and R strategies, we used the proportion of the other strategy (1− p, p)

as the parameter that captures the non-cell-autonomous contribution. In equations 7.20,7.24, we

also consider the parameter 1
2 − p because of the elegant form it provides.

We can compare these regularized fitness functions wCS to the non-regularized ŵCS in equa-

tions 7.10-7.17. As can be seen, all wCS are close to their respective ŵCS and are actually within

the error estimates on ŵCS . We can see the regularization in action with a push towards a constant

base fitness of 0.025 shared by wDMSO
{P,R} ,wDMSO + CAF

P , and w
{Aletinib,Alectinib + CAF}
R . The absence

of frequency-dependent perturbation terms for w
{DMSO,Alectinib}
P and wDMSO + CAF

R suggests that

these fitnesses can be explained in terms of cell-autonomous processes and treated like scalars.

However, the other fitnesses in the other contexts ask for a non-cell-autonomous explanation and

demand that we take the view of fitness-as-a-function. I will expand more on this in the next

section.

7.7 Switching the direction of commensalism in NSCLC fit-

ness functions

In all four conditions, we see that the growth rate of the resistant and parental cell lines depends

on the initial proportion of parental cells. As discussed in Section 7.6, to capture the principal

first-order part of this dependence, we consider a line of best fit between initial proportion of

parental cells and the growth rates. In three of the conditions, resistant cell growth rates increase

with increased seeding proportion of parental cells, while parental growth rates remain relatively

constant (in the case of no CAFs) or slightly increase (for Alectinib + CAFs). In DMSO, this sug-
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gests that parental cells’ fitness is independent of resistant cells: wDMSO
P = 0.025. Parental fitness

in DMSO could be well characterized as cell-autonomous. However, resistant cells in monotypic

culture have approximately the same fitness as parental cells (Figure 7.3a), but they benefit from

the parental cells in co-culture: wDMSO
R = 0.025 + 0.015p (where p is the proportion of parental

cells). Their fitness has a non-cell-autonomous component. The positive coefficient in front of p

suggests commensalism between resistant and parental cells, i.e. resistant cells benefit from the

interaction with the parental cells, without exerting positive or negative impact on them.

The DMSO + CAF case differs from the other three in that we see a constant – although

elevated wDMSO + CAF
R = 0.03 – growth rate in resistant cells; but a linearly decreasing (in p)

growth rate of parental cells: wDMSO + CAF
P = 0.025+0.01(1−p) (or, equivalently: wDMSO + CAF

P =

0.03 − 0.01( 1
2 − p)). This could be interpreted as CAFs switching the direction of commensalism

between parental and resistant cells.

7.8 From fitness functions to games

To measure the effective game that describes the non-cell-autonomous interactions in NSCLC, we

can either summarize the fitness functions directly as a payoff matrix, or as an object known as

the gain function (see [174, 118] for a theoretical perspective) if we just want the location of the

game in an abstract game space.

7.8.1 Summarizing fitness functions as payoff matrices

Let us start by converting our inferred fitness functions from Figure 7.4 into a payoff matrix. That

is why, for the final column of our presentation of ŵCS in equations 7.10-7.17, I rewrote the fitness

functions in a suggestive form of ŵCP = Ap + B(1− p) and ŵCR = Cp + D(1− p). This is done to

show at a glance where the matrix entries in Figure 7.5b come from. This is because the p = 0

and p = 1 intercepts of the fitness functions serve as the entries of the game matrices. In other

words, each row in the matrix correspond to a strategy’s fitness function with the column entries

as the p = 1 and p = 0 intersects of this line of best fit. Note that in Figure 7.5b, we multiplied

the entries by 100 for easier presentation.

In an idealized inviscid population one can interpret the payoff matrix

A B

C D

 as the fitness

effect on a type given by the row strategy from interacting with a type given by the column strategy.

So, for example – in an idealized population – a cell of parental type (i.e. strategy of row 1) will

receive a fitness effect of A from interacting with another parental type (i.e. strategy of column
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(P R

P A B

R C D

)
⇒

{ d

dt
NP = NP

ŵP : parental growth rate︷ ︸︸ ︷(
A
NP
NT

+B
NR
NT

)
d

dt
NR = NR

(
C
NP
NT

+D
NR
NT

)
︸ ︷︷ ︸

ŵR: resistant growth rate

⇒ dp

dt
= p(1− p)

gain function for p︷ ︸︸ ︷(
(B −D)︸ ︷︷ ︸

relative fitness of
parental invader

(1− p)− (C −A)︸ ︷︷ ︸
relative fitness of
resistant invader

p
)

where NT = NP +NR and p = NP
NT

.

(a) Replicator dynamics of parental-resistant NSCLC (b) Two dimensional game space.

Figure 7.5: Measured games: (a) Replicator dynamics. Consider an idealized population
of two strategies in a competitive co-culture: parental (P ) and resistant (R). When the type P
interacts with P the type experiences a fitness effect A; when P interacts with R then P experience
fitness effect B and R a fitness effect C; two Rs interact with fitness effects D, summarized in the
matrix. This can be interpreted as an idealized exponential growth model from Section 6.3.2 for
the number of parental (NP ) and resistant (NR) cells. The dynamics of the proportion of parental
cells p = NP

NP+NR
over time is described by the replicator equation (bottom). Of course, as I

showed in Chapter 6 and Section 7.2. these games and replicator dynamics can also be interpreted
experimentally.
(b) Mapping of the four measured in vitro games into game space. The x-axis is relative
fitness of a resistant focal in a parental monotypic culture: C − A; y-axis is relative fitness of
a parental focal in a resistant monotypic culture: B − D. Games measured in our experimental
system are given as specific points with error bars based on goodness of fit of linear fitness functions
in Figure 7.4. The games corresponding to our conditions are given as matrices (with entries
multiplied by a factor of 100) by their label. See Section 7.9 for more details on the games. The
game space is composed of four possible dynamical regimes, one for each quadrant. The typical
dynamics of each dynamic regime are represented as qualitative flow diagram between P and R: an
upward cyan arrow corresponds to an increase in the parental proportion, and a downward magenta
arrow correspond to an increase in the resistant proportion. In the case of the two dynamic regimes
observed in the NSCLC experimental system, I also include insets of measured dynamics (c,d).
Experimental time-series of proportion of parental cells for DMSO + CAF (c) and
Alectinib + CAF (d). Each line corresponds to the time dynamics of a separate well. A line is
coloured magenta if proportion of resistant cells increased from start to end; cyan if proportion of
parental cells increased; black if statistically indistinguishable proportions at start and end (where
start/end are defined as the first/last 5 time-pints (20 hours)). See Figure 7.1 for proportion
dynamics of all four games.
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1) but a fitness effect of B from interacting with a resistant type (i.e. strategy of column 2). In

a real population, however, these payoff matrix entries are abstract phenomenological quantities

that could be implemented by various biological or physical processes [111].

7.8.2 Gain functions and game space

Two-strategy matrix games have a convenient representation in a two dimensional game-space.

This is the output of the game assay. We plot the inferred games in a game-space spanned by

the theoretical fitness advantage a single resistant invader would have if introduced into a parental

monotypic culture versus the fitness advantage of a parental invader in a resistant monotypic

culture; as shown in Figure 7.5b. In this representation, the game points can be calculated from

the matrices as x := C −A and y := B −D, and the error is propagated from the error estimates

on the fitness function’s parameters. Alternatively, a particularly important equation for studying

two-strategy games is the gain function. This represents the relative fitness difference between

two strategies. Thus, it is a measure of selection strength and a proxy for the rate of evolution.

The parental gain function (i.e. gain function for p in Figure 7.5a and equation 7.9) is given by

ĝCP (p) = ŵCP (p) − ŵCR(p); and the resistant gain function (i.e. gain function for q = 1 − p) is

ĝCR(q) = ŵCR(1− p)− ŵCP (1− p) = −ĝCP (1− p). The end-points of this gain function determine the

game coordinates in the game space of Figure 7.5b with (x, y) := (ĝCR(0), ĝCP (0)) = (−ĝCP (1), ĝCP (0)).

These points can be interpreted as the idealized quantities of relative fitness of a resistant invader

in parental monoculture (ĝCP (0)) and relative fitness of a parental invader in resistant monoculture

(ĝCR(0) = −ĝCP (1)).

It is important to note that defining x := C − A and y := B − D makes the game space

coordinates a linear function of the measured fitnesses. This prevents error from blowing up

unreasonably. This is the reason for using this linear representation of games over the more

common non-linear representation [190, 107, 108] of

A B

C D

 (with A > D) as

 1 U

V 0

 that I

discuss in Section 8.1.1.

The x = 0 and y = 0 lines, divide the game space into four quadrants, with each corresponding

to a different dynamic regime that I illustrate with a sample dynamic flow in Figure 7.5b and

discuss in more detail in Section 7.11.

7.8.3 Games from interpretable fitness functions

Above, we used the raw fitness functions from Section 7.6 and the corresponding gain functions. I

think this is the appropriate thing to do in general. But we might also be interested in starting from
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Figure 7.6: Mapping of the regularized fitness functions for the four conditions into
game space. The x-axis is the relative fitness of a resistant focal in a parental monotypic culture:
C−A. The y-axis is the relative fitness of a parental focal in a resistant monotypic culture: B−D.
Games measured in our experimental system are specified by the bounding boxes corresponding
to the range of their errors. The games corresponding to the regularized fitness functions in
equations 7.18-7.25 are given as points. Experimental condition is represented by shape (DMSO:
circle; Alectinib: square) and colour (no CAF: red; + CAF: blue).

the regularized fitness functions of Section 7.6.2. For a visual confirmation that the regularization

of wCS in equations 7.18-7.25 are reasonable, we can transform them into regularized games. We

do this in the same way as we did for transforming the non-regularized ŵCS in equations 7.10-7.17

into the game-points of figure 7.5b. The results are in Figure 7.6. The regularized games (points)

are within the confidence rectangles of the measured games (boxes), with the exception of DMSO

which is just outside its box. This is reasonable given that the boxes correspond to error: i.e.

around 2/3rds confidence.

7.9 Leader and Deadlock games in NSCLC

Looking at the games that we measured in Figure 7.5b, we can see that the game corresponding

to DMSO + CAF – although quantitatively similar to DMSO – is of a qualitatively different type

compared to all three of the other combinations.

If we look at our empirical measurements for DMSO + CAF (upper-right quadrant Figure 7.5b)

then we see the Leader game, and Deadlock in the other three cases (we will use DMSO to

illustrate the Deadlock game). These are both two-strategy, two-player symmetric games that

differ in the values of the payoff matrix

A B

C D

 that specifies them. If we want an intuitive story

for these games, we can think of player 1’s strategy as specifying which row she chooses and player
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2’s strategy as specifying which column he chooses. The matrix entry corresponding to the pair’s

choice is then the payoff for player 1, and – since the game is symmetric – the transpose entry is

the payoff for player 2. This story is a fiction which I will use to give intuitions about the Leader

and Deadlock games below, but as we saw in Chapter 6 the actual effective interpretation of

these games is ontologically much more involved but mathematically equivalent to this convenient

fiction.

The Deadlock game observed in DMSO is in some ways the opposite of the popular Pris-

oner’s Dilemma (PD) game (in fact, Robinson and Goforth [187] call it the anti-PD). If we

interpret parental as cooperate and resistant as defect then, similar to PD, each player wants to

defect regardless of what the other player does (because 4.0 > 2.5 and 2.7 > 2.4; payoff numbers

used in these examples are from the matrix entries we measured in Figure 7.5) but hopes that the

other player will cooperate (because 4.0 > 2.7). However, unlike PD, mutual cooperation does

not Pareto dominate mutual defection (because 2.5 < 2.7) but is instead strictly dominated by

it. Thus, the players are locked into defection. In our system, this corresponds to resistant cells

having an advantage over parental in DMSO as I discussed in Section 7.5.

The Leader game observed in DMSO + CAF is one of Rapoport [184]’s four archetypal 2× 2

games (with the other 3 being the Exploiter, Hero, and Martyr games) and a social dilemma

related to the popular game known as Hawk-Dove, Chicken, or Snowdrift (in fact, Robinson

and Goforth [187] call it Benevolent Chicken). This means that, unlike Deadlock, Leader

is already a game of significant interest to the wider (evolutionary) game theory community. If

we interpret parental as ‘lead’ (for Snowdrift: wait) and resistant as ‘work’ (for Snowdrift:

shovel) then similar to Snowdrift, mutual work is better than both leading (because 3.0 > 2.6)

and thus no work being done (for Snowdrift: both waiting and thus not getting out of the

snowdrift) but each player would want to lead while the other works (because 3.5 > 3.0). However,

unlike Snowdrift, mutual work is not better than the “sucker’s payoff” of working while the other

player leads (because 3.1 > 3.0). Rapoport [184] sees this as a tension with a player switching from

a “natural” point of mutual work to lead and thus benefit both players (3.5 > 3.0, 3.1 > 3.0), but

if the second player also does the same and becomes a leader then all benefit disappears (because

2.6 is the smallest payoff). In our system, this corresponds to cells in the tumour experiencing

selective pressure to lose some but not all of its resistance in DMSO + CAF.

Note that the above intuitive stories are meant as heuristics, and the effective games that

we measure are summaries of population level properties [111, 100] as discussed in Chapter 6:

the population is the player and the two types of cancer cells are the strategies. This means

that the matrix entries should not be interpreted as direct interactions between cells, but as
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general couplings between subpopulations corresponding to different strategies. The coupling term

includes not only direct interactions, but also indirect effects due to spatial structure, diffusible

goods, contact inhibition, etc.. But this does not mean that an effective game is not interpretable.

For example, the Deadlock game captures the phenomenon of the resistant population always

being fitter than parental (for example, in DMSO). We noted this effect intuitively in Figure 7.3

(also see Section 7.5) from replicates being above the y = x diagonal. Measuring a Deadlock

game for DMSO with confidence intervals that do not extend outside the bottom right quadrant

of the game space in figure 7.5b allows us to show the statistical significance of our prior intuitive

understanding. In other words, effective games allow us to quantify frequency-dependent differences

in growth rates.

7.10 Treating the game

So far, measuring a linear gain function has enabled us to develop an assay that represents the

inter-dependence between parental and resistant cells as a matrix game. Experimentally cataloging

these games allows us to support existing theoretical work in mathematical oncology that considers

treatment (or other environmental differences) as changes between qualitatively different game

regimes [7, 18, 115, 118]. In this framework, treatment has the goal not to directly target cells

in the tumour, but instead to perturb the parameters of the game they are playing to allow

evolution to steer the tumour towards a more desirable result (for examples, see [7, 18, 115, 118,

157, 19]). Empirically, this principle has inspired or built support for interventions like buffer

therapy [54], vascular renormalization therapy [83], and adaptive therapy [238] that target the

micro-environment and interactions instead of just attacking the cancer cell population. The

success of the Zhang et al. [238] trial suggests that therapeutic strategies based on modulating

competition dynamics are feasible. This highlights the need for a formal experimental method like

our game assay that directly measures the games that cancer plays and tracks if and how they

change due to treatment.

In our system, we can view an untreated tumour as similar to DMSO + CAF and thus following

the Leader game. Treating with Alectinib (move to Alectinib + CAF) or eliminating CAFs

through a stromal directed therapy (move to DMSO), moves the game into the lower-right quadrant

of Figure 7.5b, and the game becomes a Deadlock game. Not only are these games quantitatively

different among the four environmental conditions – see Figure 7.5b – but they are also of two

qualitatively different types. To my knowledge, neither of the Leader and Deadlock games are

considered in the prior EGT literature in oncology. Given that the Deadlock of drug-resistant
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over drug-sensitive cells is a challenge for classic models of resistance, I would be particularly

interested in theoretical models of resistance that produce the Deadlock game. In addition to

challenging theorists by adding two new entries to the catalogue of games that cancers play, this

switch allows us to show that the theoretical construct of EGT – that treatment can qualitatively

change the type of game – has a direct experimental realization. Unfortunately, neither of our in

vitro games would lead to a therapeutically desirable outcome if they occurred in a patient.

7.11 Fixed points, heterogeneity and latent resistance

A particularly important difference between Leader and Deadlock dynamics is the existence

of an internal fixed point in Leader but not in Deadlock. This can be seen from the Leader

game having both coordinates positive, while the Deadlock games have y < 0 < x. As we

saw in Section 7.8.2, if these two coordinates have the same sign then the gain function has to

cross 0 in getting from p = 0 to p = 1 and thus the dynamics have a fixed point. In general, in

this representation, there are four qualitatively different types of games corresponding to the four

quadrants, each of which I illustrative with a sample dynamic flow. If the game point has opposite

signs (either y < 0 < x or x < 0 < y) then the dynamics flow from the unstable strategy (strategy

1 if x < 0; strategy 2 if y < 0) to the stable strategy (strategy 1 if x > 0; strategy 2 if y > 0). If

the two coordinates are both positive (top right quadrant of Figure 7.5b) then the fixed point is

stable, if both are negative (bottom left quadrant of Figure 7.5b) then the fixed point is unstable.

In our experimental system, only the DMSO + CAF condition has a fixed point at 0.53 ± 0.14

(rounded to the nearest percent).

7.11.1 Width and height of fixed regions

Since we propagate the errors on our measurement from the image all the way to the game, we

find it more helpful to think of an experimental fixed point not as a point but as a fixed region

p ∈ (0.39, 0.67) of finite width. This can provide an alternative explanation for the apparent

slowness of convergence to the fixed point in Figure 7.1. Some of the fixed region’s width is noise

in measurement, but some could be due to true variance between wells: in particular, even if the

reductive game is the same, the spatial structure will be slightly different in each well and thus

there will be a slightly different effective game. As such, apparent slowness in Figure 7.1 might be

from different lines being very close to slightly different fixed points that are all within the fixed

region’s width. An alternative view to width is in terms of height: a fixed region corresponds

not just to the point where ĝDMSO + CAF
P crosses 0 but to the region where the gain function
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crosses 0 ± 0.0014 (rounded to the nearest thousandth). I call this the fixed region’s height (and

use it in Section 7.12). This height is due to propagation of error and can be interpreted as our

measurement not being able to distinguish relative growth rates in (−0.0014, 0.0014) from zero.

In the case of the other three conditions (DMSO, Alectinib, and Alectinib + CAF), in going from

p = 0 to p = 1, the gain functions do not pass within their fixed region height of zero, and thus

no fixed regions exist. Of course, fixed points and regions are a property of equilibrium dynamics:

in the most general case, even on very long timescales these fixed points might not be realized

due to the evolutionary constraints of population size [58] or computation [33, 96] (as discussed in

Chapter 2). Thus, it is important to check to what extent this qualitative difference can translate

to a quantitative difference in finite time horizons. Although based on the proportion dynamics in

Figure 7.1, it is reasonable to believe that our experimental system equilibrates relatively quickly.

But for certainty, it would be useful for future work to consider replating experiments (for example,

with replating as described in Section 6.4.1) to extend the time-scales past what we considered.

7.11.2 Coexistence in DMSO + CAF as latest resistance

In our system, we can see a quantitative difference in the convergence towards the fixed point in

the DMSO + CAF condition of Figure 7.5c, and no such convergence in the other three cases

(Figure 7.5d for Alectinib + CAF; Figure 7.1). Since the strength of selection (magnitude of the

gain function) is small near a fixed point, the change in p also slows in the DMSO + CAF condition.

Since the DMSO + CAF condition is our closest to an untreated patient, it might have im-

portant consequences for latent resistance. As discussed in Section 7.5, many classical models of

resistance assume a rare preexistent mutant taking over the population after the introduction of

drug. In our experimental system, however, if the resistant strategy is preexistent then negative

frequency dependent selection will push the population towards a stable polyclonal tumour of re-

sistant and sensitive cells before the introduction of drug. This allows for much higher levels of

preexisting heterogeneity in resistance than predicted by the classical picture. As such, we urge

theorists to reconsider the assumption of the rare pre-existing resistant clone.

Of course, our results are for a single in vitro system. But if similar games occur in vivo and/or

for other cancers, then such preexisting heterogeneity could be a possible evolutionary mechanism

behind the speed and robustness of treatment resistance to targeted therapies in patients. This

could help explain the ubiquity and speed of resistance that undermines our abilities to cure

patients or control their disease in the long term. We will not know this unless we set out to

quantify the non-cell autonomous processes in cancer. Building a catalogue of the games cancers

play – by adopting our game assay in other cancers, and other experimental contexts – can help
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Figure 7.7: Residuals for the fitness functions. The x-axis is proportion and y-axis is residuals
of the lines of best fit from Figure 7.4 for parental (Cyan,Top) and resistant (Magenta,Bottom).

resolve this and other questions.

7.12 Generalizing game assay to non-linear fitness functions

Regularization is a machine learning technique for reducing over-fitting by biasing towards more

succinct models. It is the use of a priori knowledge on what constitutes a simpler or more likely

model to anchor our inference. A classic example of this is preferring lower-order over higher-

order polynomials for describing data unless there is overwhelming evidence otherwise. Of course,

what constitutes overwhelming evidence depends on the goals of the scientists. If the only goal is

prediction then cross-validation is a good way to test how heavily inference should be regularized.

But if the goal is explanation then accordance with extant theory is an important factor to consider.

As such, our choice of focusing on fitness function (i.e., mappings from the strategy distribution

in a population to the fitness of a strategy) that are linear in Sections 7.6 and 7.8 and Figure 7.4

can be seen as a form of regularization to accord with the extensive existing theoretical work

on matrix games. In particular, we can see our inference procedure as either restricted to the

hypothesis class of linear functions, or as considering the hypothesis class of all polynomials but

with prohibitively high costs for non-zero components (l0 regularization) on orders beyond linear.

But we prefer to think of it in terms of operationalization. By introducing a game assay, we are

defining the hidden variable of (matrix) games in terms of the measurement procedure that we

described in Sections 7.2, 7.6, and 7.8.

Although slight deviations from a linear fit – that might not be attributable to noise alone –

might be present in the data (see Figure 7.7), I do not think that they justify considering higher-

order fitness functions (although I discuss higher-order functions briefly here for completeness).
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Figure 7.8: Cubic Fitness functions for competition of parental vs. resistant NSCLC.
For each plot: growth rate with confidence intervals versus initial proportion of parental cells. This
is the same data as Figure 7.4. Cyan data points are growth rates of parental cells, and magenta
for resistant cells. Dotted lines represent the 3rd-order (cubic) fitness function of the least-squares
best fit. The black dotted line is the gain function for parental (see Figure 7.5a), it is well below
the y = 0 line in the Alectinib conditions (indicating the strong advantage of resistance) and thus
cut out of the figure.

This is due to the higher explanatory value of linear models and my hope to influence the well-

established study of matrix games in microscopic systems. Note that this linearity is not guaranteed

to be a good description for arbitrary experimental systems. For example, the game between the

two Betaproteobacteria Curvibacter sp. AEP1.3 and Duganella sp. C1.2 was described by a

quadratic gain function [131, 106]. And although some good EGT work has recently been done

on non-linear games [7, 8, 131], this is very little compared to the immense literature on matrix

games. More importantly, I think that our focus on matrix games is better viewed not from the

perspective of model selection but rather as an operational definition of effective games. I am not

aiming to provide the best or most predictive account of non-small-cell lung cancer in the petri

dish, but rather a method for measuring (matrix) games. If the error of the measured (matrix)

games ends up very high – which is not the case from the error bars in Figure 7.5b – then we

know that this first order approximation of interactions is not sufficient and higher orders should

be pursued. However, we will not know this unless we first have a robust method for measuring

the lower order terms.

Alternatively, if one views this work from the perspective of model selection then in this Chapter,

I proceed from the assumption of linearity. Here, I relax this assumption, extend the game assay

to non-linear games, and compare linear and non-linear models with information criteria. The

qualitative results are unchanged, although the exact quantitative results for non-linear models

differ slightly.

In particular, whereas Sections 7.6 and 7.8 used linear functions as the hypothesis class for

fitting the growth-rate vs. proportion, one could use any other class of functions. An obvious

candidate is polynomial fitness functions of orders higher than 1. We provide an example in
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Figure 7.9: AICs and BICs for best polynomial fits of a given degree (up to additive
offset). In cyan are AIC and BIC values for models parental cell fitness functions, while in magenta
are AIC and BIC values for models of resistant cell fitness functions. Circles surround the minimum
of AIC and BIC.

Figure 7.8 of a 3rd-order (cubic) fit. Visually, the cubic provides a better fit than the linear one in

Figure 7.4, which is to be expected from the extra degrees of freedom. But qualitatively it provides

the same interpretation as the linear fitness functions, including the same number of fixed points.

In particular, DMSO + CAF has a single fixed point at p = 0.52 and (using the fixed region height

from Section 7.11.1) a single fixed region for p ∈ (0.04, 0.668). This is much like the linear fit, but

the fixed point region is expanded. The other three conditions (DMSO, Alectinib, and Alectinib

+ CAF) still have no fixed points and no fixed regions.

7.12.1 Information criteria for non-linear fits

If we treat the game assay not as a measurement and definition of games but as a model selection

problem for parameter fitting then it becomes important to quantify the trade-off between the

goodness of fit and model simplicity. For this, we can use techniques like the Akaike information

criterion (AIC), its small-sample size correction (AICc), or the Bayesian information criterion

(BIC) – or any other statistical model selection procedure. Given that (i) a polynomial of degree

d has k = d + 2 degrees of freedom as a statistical model (+1 for zeroth order term, +1 for noise

term); the eight models (4 conditions, 2 fitness functions per condition) are trained on n = 42

data points each; and AIC/BIC only works reasonably when n >> d. For example, given our

relatively small dataset for each model, Burnham and Anderson [26] would advocate to always

prefer AICc over AIC (they suggest n/k < 40 as the cut off). Hence, we show the results of all

three of AIC, AICc and BIC for polynomial fitness functions for degree d ≤ 6 in Figure 7.9. In this

figure, a better model corresponds to a lower AIC, AICc or BIC value (lower on the y-axis). Since
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Figure 7.10: Fitness functions for competition of parental vs. resistant NSCLC as
selected by BIC. For each plot: growth rate with confidence intervals versus initial proportion
of parental cells. This is the same data as Figure 7.4. Cyan data points are growth rates of
parental cells, and magenta for resistant cells. Dotted lines represent the fitness function of the
least-squares best fit for models selected by BIC. These are a linear model for resistant fitness
function in Alectinib + CAF; quadratic models for parental fitness function in Alectinib + CAF,
resistant fitness function in Alectinib, and both fitness functions in DMSO; cubic for resistant in
DMSO + CAF, and parental in Alectinib; and quintic for parental in DMSO + CAF. The black
dotted line is the gain function for parental (see Figure 7.5a), it is well below the y = 0 in the
Alectinib conditions (indicating the strong advantage of resistance) and thus not visible in the
figure.

constant offsets in the information criteria do not matter for model selection, the axes are set so

that the linear model has ∆{AIC,AICc,BIC} = 0. The leftmost column of Figure 7.9 considers

the joint product model where each fitness function has the same degree – for the d = 1 model,

this would correspond to the linear game assay as presented in Section 7.6 and 7.8. Both AICc and

BIC select the 3rd-degree polynomial model that we discussed above. AIC doesn’t differentiate

strongly between the 3rd, 4th, 5th and 6th degree, but prefers slightly the 5th degree. Too much

emphasis should not be placed on AIC however, given the number of parameters compared to

sample size [26]. The four right columns of Figure 7.9 consider independent models for each of

the fitness functions across the 4 different conditions – so a total of 8 models. At the cost of extra

researcher degrees of freedom, it is possible to look at the fits where the model for each of the 8

fitness functions is selected independently. Such a fit, as selected by BIC, is shown in Figure 7.10.

Note the two extra crossings of zero by the gain function in the DMSO + CAF case.

7.12.2 Plotting nonlinear games

Just like with the linear games, it is possible to plot nonlinear games in our 2D game space based

on the p = 0 and p = 1 endpoints of the gain function. We do this in Figure 7.11 with each point

labeled by the degree of the corresponding polynomial fitness functions. Unsurprisingly, at a brief

glance there is broad qualitative agreement – all (but one) points are in the same quadrant as the

linear model – although little quantitative agreement with the linear game assay – most points
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Figure 7.11: Mapping of the AIC and BIC selected fitness functions for the four con-
ditions into game space. The x-axis is the relative fitness of a resistant focal in a parental
monotypic culture. The y-axis is the relative fitness of a parental focal in a resistant monotypic
culture. Games measured in our experimental system are specified by the bounding boxes corre-
sponding to the range of their errors. The games corresponding to joint degree models are given as
points, with joint degree labeled nearby. Experimental condition is represented by shape (DMSO:
circle; Alectinib: square) and colour (no CAF: red; + CAF: blue).

are outside of the error-box corresponding to the linear game. However for a general nonlinear

game, unlike with linear games, two points in the same quadrant might not correspond to the same

qualitative kind of dynamic. In particular, for a general nonlinear game, a quadrant only tells us

the parity of the number of roots in (0, 1) – where roots are counted by their multiplicity – and

the order of alternations on the flow. For more on discrete flow alternation representation of gain

functions, see Peña, Lehmann, and Nöldeke [174].

Fortunately, for our particular experimental system the above generality is not realized. In

particular, for all degrees of the DMSO, Alectinib, and Alectinib + CAF games the gain func-

tions have no fixed points – just like the linear case. For DMSO + CAF, degrees d = {1, 2, 3}

have one fixed point and d = {5, 6} have 3 fixed points (although only two fixed regions: p ∈

{(0.07, 0.25), (0.38, 0.46)} for d = 5 and p ∈ {(0.09, 0.31), (0.44, 0.50)} for d = 6. For d = 0 it is

impossible for any model to be in the top right or bottom left quadrant – since no constant line can

be both negative and positive – and there is no fixed point, but the fitness difference for DMSO is

so tiny that there is a single fixed region for the whole space p ∈ (0, 1). The real outlier for DMSO

is d = 4 since it has two fixed points (and is thus in the bottom right quadrant) and two fixed

regions at p ∈ {(0.07, 0.11), (0.29, 040)}. Thus, the existence of fixed point(s) in DMSO + CAF

and absence of fixed points in the other conditions is robust across the nonlinear models. The

exact position of the fixed point(s) in DMSO + CAF, however, is not as robust to model choice.
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7.13 Summary

In Chapter 6, I introduced replicator dynamics with frequency-dependent fitness as a representation

for the ecology of an evolving system and defined the idea of empirical abstraction. In this chapter,

we got to see empirical abstraction in action by measuring the ecology of non-small cell lung cancer.

I achieved this by defining the game assay as an experimental technique for measuring ecology in

microscopic systems. In the process, we saw that Alectinib-sensitive and Alectinib-resistant cell

types play two qualitatively different kinds of games (Leader vs Deadlock; see Section 7.9)

based on the absence vs presence of Alectinib and cancer-associated fibroblasts. This empirically

confirmed the previously theoretical postulate of evolutionary oncology: we can treat not just

the player, but also the game (Section 7.10). In the process, I also challenged other theoretical

postulates like costly-resistance (Section 7.5). I expect that this game assay will prove useful in

systems beyond cancer. But even in cancer, I hope that in the near future we will be able to extend

the four games measured in this chapter into a more comprehensive catalogue of the different games

that different cancers play.
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Chapter 8

Spatial structure and the multiple

realizability of effective games

In this chapter, we finally reach an explicit discussion of spatial structure. This is important to

study because, after all, with the possible exception of leukemia and lymphoma, cancers exist in

space, adjacent to cells and boundaries, with daughter cells taking over the space of (or near) their

mothers. And the importance of space is not limited to cancer. Spatial structure in evolutionary

game theory is so important that a particular approach to it even has its own sub-field name:

evolutionary graph theory [132, 207, 196, 137]. Durrett and Levin [47] and Shnerb et al. [199] have

provided a particularly good demonstration of how much spatial structure and stochasticity can

matter as they built from mean-field approaches (i.e., inviscid model – meaning that the probability

to interact with a strategy is the same as the proportion of the strategy in the whole population; of

which the inviscid replicator dynamics with which we started in Chapter 6 is an example), to patch

models of discrete individuals, to reaction-diffusion equations, to full-fledged interacting particle

systems. It has been shown that spatial structure can promote cooperation [159, 163, 116, 72],

or inhibit it [73], or complicate the whole discussion around it [122, 176, 107]. Since we do not

expect such complications in the mean-field, we can see from these results that spatial structure can

drastically change the effect of the reductive game such that the mean-field analysis is completely

inapplicable.

With all of these arguments for the importance of space, why does anybody even bother to

think about inviscid replicator dynamics? Why does not everybody build spatial models? Even

the argument of analytic intractability is no defence when we have pair-approximation techniques

(and other alternatives) that can be applied with few arbitrary model commitments [145, 222,

169
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162].

But there is more than one approach to dealing with spatial structure. In Section 8.1, I will

introduce the traditional approach of working from the bottom up: transforming a reductive game

through an incorporation of spatial structure. This mirrors the discussion of reductive games from

Section 6.3 and it is the most common approach to incorporating spatial structure into EGT. I

will highlight this bottom-up approach with a discussion of the classic Ohtsuki-Nowak transform

for random k-regular graphs [162] alongside my novel interpretation of the transform as 1st-order

approximation of any spatial structure [93, 115]. In Section 8.2, I will discuss an example of this

bottom-up approach in cancer by briefly reviewing Kaznatcheev, Scott, and Basanta [115]’s work

on spatializing the Go-vs-Grow game. Unfortunately, as with reductive games in Chapter 6,

this bottom-up approach to space is not compatible with how direct measurements can be done in

microbiology.

So to better align with experiment, I use Section 8.3 to advocate for starting at the effective

games from Section 6.4 and working our way down towards the reductive game. In Section 8.4, I

justify effective games as an abstract object through their multiple realizability by the combination

of different reductive games and spatial structures. This can be especially important because spatial

structure can both create (Section 8.4.1) and hide (Section 8.4.2) non-cell-autonomous interactions.

Finally, in Section 8.5, I consider a proposal for how to experimentally extract the contribution of

space from an effective game that would normally swallow-up or abstract the spatial structure into

measurement. This aims to push the effective games down a level of abstraction. Unfortunately –

unlike Chapter 7 for top-level effective games – I leave it for future work to actually realize these

sorts of experimental measurements.

As with Chapter 6, the novelty of this chapter is in the way that I frame the distinction between

reductive games vs effective games and the view of spatial structure as a transformation between

them. By providing this new framing, I make clear the implicit direction from reductive to effective

of much of the existing work on spatial structure. And I open the door for work in the opposite

direction: from directly measured effective games to inferred reductive games. This allows me to

use this chapter to conclude the empirical abstraction theme of this second part of the thesis.

8.1 Approximating space with Ohtsuki-Nowak transform

A typical study of space in evolutionary game theory will start with the reductive game and

then simulate that interaction over a model of space to show a surprising difference in dynamics

between the spatial model and the mean-field inviscid (i.e. non-spatial, zeroth-order) model with
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the same payoff matrix (i.e. reductive game). Particularly strong works like that of Ohtsuki and

Nowak [162] (more recently, Nanda and Durrett [156]), provide a general method for combining a

reductive game with spatial structure. Although in its original presentation, Ohtsuki and Nowak

[162] focused on dynamics on k-regular random graphs, I think it can be useful to frame their work

as a general first-order approximation of an arbitrary spatial structure.

First, let me present the replicator equation for reductive games as a zeroth-order or mean-

field approximation of spatial structure. Without knowing anything about spatial structure, the

roughest guess we can make of the probability of interacting with another agent is just to say that

we sample agents from a distribution given by their proportion in the population – a mean-field

approximation. This gives us a utility function for agents of type i as [Gp]i where Gij is the payoff

of an agent of type i interacting with an agent of type j and p is a vector of proportions of agents of

each type. From here on in, as in Section 6.3, our hands are tied and the math forces us to replicator

dynamics: ṗi = pi([Gp]i − pTGp). But the perfect sampling used in the mathematics of fitness

effectively makes interactions global: what might be considered as a 0th-order approximation of

space.

To avoid assuming this global interaction, we can say that instead of the fitness being the mean-

field [Gx]i, we instead sample M interaction partners from the distribution given by x and use these

local interaction groups for our fitness calculation. This would be our 0.5th-order approximation.

In this case, Hilbe [76] showed that the result is still replicator dynamics (although with a different

time-scale that is irrelevant to the functional form) but with a modified payoff matrix G′ = G +

1
M−2 (G − GT ), where GT is the matrix transpose of G. This is a great way to reintroduce some

local effects, but the groups of M agents are constantly re-sampled and fitness-competition still

happens at a global level; in other words, there is no spatial structure. Hence the 0.5 and not 1.

To get things completely localized, we will assume a fixed population size, and make our

replication procedure more explicit to make a first-order approximation of spatial structure. Since

the population size is fixed, we can only get a new agent if an old one dies. This can be a severe

limitation in general, but when this replacement idealization is acceptable, it gives us a great

way to localize. Once a focal agent dies, there is some spatial neighborhood of the focal agent

with k agents that compete for the focal spot (this is often represented as a graph, but a graph-

theoretical model is not always necessary, as I discuss in Section 8.5). Now, we can have some

extra information, instead of just keeping track of the proportion of agents of type i given by pi,

we can keep track of neighbors. More explicitly, we will use pair-approximation [145, 222] to keep

track of proportion pij : the probability of seeing an agent of type i in the neighborhood of an agent

of type j.
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This tells us who is competing for the vacated spot, but these neighbouring agents can interact

with agents at distance two from the vacated spot. Thus, to calculate the neighbouring agents

fitness, we would need to know the probability pijk of seeing an agent of type i near an agent

of type j and k. To update that probability, by similar logic, we would need to know more long

range effects like pijkl, etc. Hence, for a first-order approximation, we truncate the series here and

approximate the further effects by saying that pijk = pij . Since we assumed that the neighbors

of the perished agent i are drawn from the same sort of distribution as the neighbors’ neighbors,

we have ignored extra correlations that might arise from looking out to distance two or more,

hence the first order nature of the approximation. The approximation is only exact for infinite

Bethe-lattices and relatively good for k-regular random graphs. If we were looking at other graph

structures like grids then higher order terms would dominate.

The fun part of my presentation of the Ohtsuki-Nowak transform is that it shows us that

we do not need to assume our spatial structure is a graph. We just need to think in terms of

sampling k times from distributions of agents’ neighbors in space with some locality assumptions

on these distributions (i.e., the distribution becomes effectively biased in a way that makes it more

likely to return as a focal’s neighbour an agent that is similar to the focal – this is also known as

local-child placement). Since Ohtsuki and Nowak [162] have a separation of time-scales in their

analysis, effects of the graph beyond this random sampling are not preserved anyway. Thus, this

approximation technique is generally applicable, even to strangely structured settings like a solid

tumour. Of course, like any first-order approximation, if higher-order effects are important then

the model will not agree with experimental data. However, if we just look at data without a

first-order theory then we wouldn’t even know that higher-order terms are important. Thus, the

first-order approximation is always a good first step; if empirical results contradict it then at least

we know where to look, second-order and higher correlations in the distributions of neighbors.

Working under these assumptions, Ohtsuki and Nowak [162] showed that we still get replicator

dynamics but with a modified payoff matrix G′′ = ONk(G) given by:

ONk(G) = G+
1

k − 2
(~∆~1T −~1~∆T )︸ ︷︷ ︸

assortativeness from local dispersal

+
1

(k + 1)(k − 2)
(G−GT )︸ ︷︷ ︸

finite sampling from
death-birth updating

(8.1)

where ~∆ is a vector of the diagonal elements of the game matrix G, i.e. ~∆i = Gii and ~1 is

the all ones vector; thus ∆~1T (~1∆T ) is a matrix with diagonal elements repeated to fill each row

(column); and I have reordered the terms from Ohtsuki and Nowak [162]’s presentation to highlight

the transform’s logical structure. Note that we have k agents competing for a spot, and each one
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samples k−1 other agents (since one spot they are neighboring was just vacated) so M = k(k−1).

Thus, the last term is the Hilbe [76] finite sampling effect and the first term is the spatial structure.

To restate: the effective game G′′ = ONk(G) then has the same mean-field replicator dynamics

as the reductive game G carried out on (a first-order approximation of) the spatial structure.

In other words, Ohtsuki and Nowak [162] provide a transform from reductive to effective game.

That effective game then has the same nonspatial dynamics as the reductive game played out

on the spatial structure. This allows us to use our tools of evolutionary game theory to analyze

the transformed game and thus learn something about the system implemented by the reductive

game and spatial structure. We can think of this approach as bottom up: start with the reductive

game, find the corresponding effective game (or other description of macroscopic population-level

dynamics) and then use these as a prediction to compare against observed phenomena.

8.1.1 General Ohtsuki-Nowak transform as game-space transformation

If the Ohtsuki-Nowak transform is interpreted literally as applied to k-regular random graphs then

it is important to note that it is sensitive not just to the degree k but also to the particular

update rule used. I will use ν to index this second dimension for the microdynamic parameters.

Above, I presented death-birth updating (ν = 1
k+1 ) – the most local rule: a focal agent is selected

uniformly at random to be removed and its neighbours compete to replace it, with each neighbour’s

replacement probability proportional to its fitness. But Ohtsuki and Nowak [162] also consider

other update rules like birth-death and imitation from Section 6.3.1. For imitation updating (ν =

3
k+3 ), the focal agent is not removed but instead copies one of its neighbours or itself proportional

to fitness. For birth-death updating (ν = 1), a focal agent is sampled according to its fitness and

then selects one of its k neighbours uniformly at random (i.e. with probability 1/k) as an alter

with the focal agent’s cloning itself to replace the alter. This lets me present the Ohtsuki-Nowak

transform in a new general form in two parameters:

ONk, 1ν
(G) = G+

1

k − 2
(∆~1T −~1∆T ) +

ν

k − 2
(G−GT ) (8.2)

Now, I want to apply the Ohtsuki-Nowak transformation to a general two strategy game:

A B

C D

 (8.3)

Unlike the game space of Section 7.8 and Figure 7.5, I want to focus on the case when A >

D to build a UV-game space of cooperate-defect games [190, 107, 108] through the following
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Figure 8.1: Ohtsuki-Nowak transform for birth-death and death-birth with k = 3 (so ν = 1
4 )

applied to a general reductive cooperate-defect game

(
1 U
V 0

)
. The game space has the axes of

U and V . The green region corresponds to when the effective fitness of strategy one is higher than
that of strategy two. The red region corresponds to when the effective fitness of strategy two is
higher than that of strategy one.

transformation:

A B

C D

⇒
A−D B −D

C −D 0

⇒
 1 B−D

A−D

C−D
A−D 0

 =:

 1 U

V 0

 (8.4)

where the first step notes that only relative fitness matters, and second step follows by changing

the units in which fitness is measured. I can now apply the ON-transform from Equation 8.2 to

all such cooperate-defect games to give us:

ONk,ν(

 1 U

V 0

) =

 1 U

V 0

+
1

k − 2

 0 1

−1 0

+
ν

k − 2

 0 U − V

V − U 0

 (8.5)

=

 1 X

Y 0

 (8.6)

where k is the degree and ν = 1 for Birth-Death updating or ν = 1
k+1 for Death-Birth updating.

We can see equation 8.6 as a transformation from the U-V reductive game coordinates of

Equation 8.2 to the X-Y effective game coordinate system given by the affine transform:

X
Y

 =
1

k − 2

k − 2 + ν −ν

−ν k − 2 + ν


U
V

+
1

k − 2

 1

−1

 (8.7)
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The effects of this coordinate transform on UV-space can be seen in Figure 8.1 for k = 3.

The green region is where cooperation is the only evolutionary stable strategy, the red is where

defection is the only ESS. The uncoloured regions have a fixed point of C-D dynamics; in the top

right region of game space the point is an attractor, in the bottom left it is a point of bifurcation.

8.2 Typical bottom-up study: spatializing Go-vs-Grow game

As an example of the typical study of spatial structure in EGT, consider Kaznatcheev, Scott, and

Basanta [115] – whose main results are presented in Figure 8.2 and that I will recap in this section.

In this study, we started with the reductive Go-vs-Grow game [17] between the two strategies

of invasive (INV; Go) and autonomously growing (AG; Grow) cells with the payoff matrix given

in Equation 8.8 (as before, first player selects row and the second column, the payoff is for the

first player). For the biological details and justifications of the Go-vs-Grow game, see Basanta,

Hatzikirou, and Deutsch [17] and Kaznatcheev, Scott, and Basanta [115].

We wanted to know how the game was affected by different spatial structure in the bulk versus

a static boundary of a tumour, so we transformed it according to the Ohtsuki and Nowak [162]

transform:


INV AG

INV 1
2b+ 1

2 (b− c) b− c

AG b 1
2b

 (8.8)

↓

ONk(◦)

↓ 1
2b+ 1

2(b− c) b 2k − 3
2(k − 2)

− c2k2 − k − 1
2(M − 2)

b 2k − 5
2(k − 2)

+ c k + 3
2(M − 2)

1
2b

 (8.9)

where M = k(k − 1) and b ≥ c ≥ 0.

Here, the reductive game from Equation 8.8 – if it was without spatial structure – has one of

two possible dynamics:

• if cb ≥
1
2 then the AG cells are always fitter and we would expect a benign (i.e. non-invasive)

tumour of autonomous growth cells, but
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Figure 8.2: Evolutionary game dynamics as a function of changing neighborhood size
and relative cost of motility. This figure is adapted from Kaznatcheev, Scott, and Basanta
[115] and discussed in detail in Section 8.2. Here, I plot level of viscosity 1

k−2 (where k is the
degree of the random regular graph for the ON-transform) versus relative cost of motility c

b . The
parameter space is divided into three regions that correspond to qualitatively different dynamics.
In the red, the population evolves toward all INV; in the yellow – toward a polyclonal tumour of
INV and AG cells; and in the green the tumour remains all AG.
When 1

k−2 = 0 (i.e., k → ∞) we recover the standard inviscid replicator dynamics of previous

work [17]: in this case the reductive and effective game are the same. For 1
k−2 = 1 (i.e., k = 3,

the top edge of the plot), we have the environment with the smallest local neighbourhood to
which the ON-transform applies. The top horizontal coloured line marks k = 5 (pink cell in the
cartoon at right corresponding to the static edge of a tumour) and the bottom line is k = 8 (teal
cell in the cartoon corresponding to the bulk of the tumour). The left vertical dotted line is at
c/b = 0.23, and shows that it is possible to go from a polyclonal tumour in the bulk to a completely
invasive population at a static edge. The right vertical dotted lines shows that is possible to see a
qualitative shift from all AG to a polyclonal tumour in dynamics with the game fixed at c/b = 0.53
by decreasing k from 8 and 5 (increasing 1

k−2 from 1/6 to 1/3) at the tumour boundary.
Example dynamics from a numerical solution of the replicator equation of the transformed game
are shown in the insets, where the proportion of INV (p) is plotted versus time (t). The equation
specifying the dynamics is ṗ = p((ONk(G)~p)1 − ~pTONk(G)~p) where ~pT = (p , 1 − p), G is the
game in Equation 8.9, and ONk is the transform from Equation 8.1. The left inset corresponds
to c/b = 0.23, an initial proportion of invasive agents of p0 = 0.93, k = 5 (tumour edge) for the
red line, and k = 8 (tumour bulk) for the yellow. The right inset corresponds to c/b = 0.53, an
initial proportion of invasive agents of p0 = 0.04, k = 5 (tumour edge) for the yellow line, and
k = 8 (tumour bulk) for the green. The cartoon at right shows an example tumour, with a static
boundary (like an organ capsule) in black, cancer cells in blue and healthy cells in yellow.
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• if 1
2 >

c
b then the AG to INV cells can co-exist and we would expect a heterogeneous tumour.

This is the sort of conclusions that Basanta, Hatzikirou, and Deutsch [17] draw when analyzing

the non-spatial game. But if we allow space then the effective game in Equation 8.9:

(a) shifts up the 1
2 threshold by 1

2(2k+1) to k+1
2k+1 thus making co-existing of go and grow cells

slightly easier; and – more importantly –

(b) creates a new dynamic regime of a fully invasive tumour when k+1
k2+1 ≥

c
b .

This is summarized in Figure 8.2.

From (a) we drew the conclusion that spatial structure can make tumours more dangerous;

and from (b) we drew the surprising conclusion that a tumour can have a much more invasive

phenotype at the boundary – where k is lower – than the bulk – where k is higher [115].

8.3 Effective games and the confusion over spatial structure

But when we apply the typical pipeline: how do we know that the local interactions of the reductive

game are the right ones to start with? In the example above, how do we know that the reductive

Go-vs-Grow game is given by Equation 8.8? For macroscopic systems like human or other

large animals, we might be able to directly observe or maybe even design the reductive game. In

microscopic systems like cancer, however, we tend to guess these games from intuitions acquired by

looking at population-level experiments. Unfortunately, these experiments – even when spatially

structured like the images in Chapter 7 – seldom explicitly account for the effect of their spatial

structure. Hence, intuitions based on these experiments are actually intuitions about the effective

game that we then feed into our models as the reductive game. This is the common confusion about

spatial structure in microscopic systems. The common procedure that we followed in Kaznatcheev,

Scott, and Basanta [115] is taking a game from a top-level view, feeding it into the bottom level,

getting a different result at the top-level and then publishing that surprising conclusion.

This is backwards. At best, it is just telling us that our intuitions about the game were wrong

– since correct intuitions about the reductive game should yield the observed effective games. At

worst, this is a category mistake and thus incoherent: we are putting an effective game where we

should be putting a reductive game. To make the approximating spatial structure by techniques

like the Ohtsuki-Nowak transform useful to microscopic systems like cancer, we have to invert the

typical pipeline. We must start at the top with a carefully designed game assay to measure the

effective game played by the population, or else design new assays that measure both the game

and space together. This measured effective game encodes the combined effect of the reductive
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game, spatial structure, and other aspects of the experimental system. We can then push down by

measuring spatial structure and for example inverting the transforms of Ohtsuki and Nowak [162].

In the case of two-strategy games, this can be done easily by inverting the affine transform from

reductive to effective games in Equation 8.7 into one from effective to reductive games:

U
V

 =
1

k − 2(1− ν)

k − 2 + ν ν

ν k − 2 + ν


X
Y

+
1

k − 2(1− ν)

−1

1

 (8.10)

This removes the contribution of this kind of space, allowing us to arrive at a more reductive game.

When this reductive game ends up contrary to our intuitions, then we are entitled to claim that

we genuinely have a surprising conclusion.

Of course, this top-down pipeline should be carried out with a model of space that is more

appropriate to the experimental system in question. For this purpose, I suggest a more easily

parameterizable invertible model of space in Section 8.5. More importantly it should be used when

learning a more reductive game is useful. In many cases – especially ones where space cannot be

experimentally manipulated – this reductive game is not particularly useful and the effective game

suffices. It is just important to not over-interpret this effective game because it could implemented

by many different combinations of reductive games and spatial structure, as I now discuss.

8.4 Multiple realizability of effective games

To see the multiple-realizability of effective games, we can look at an experimentally measured

effective game. Consider the Leader game from Chapter 7 that we measured in the DMSO +

CAF case of the non-small cell lung cancer system:

2.6 3.5

3.1 3.0

 (8.11)

where parental is the strategy corresponding to the first row and column and resistant is the

strategy for the second row and column.

There are several reductive games that could implement the effective game in Equation 8.11.

For a first example, if we thought that every cell interacted with every other cell and updating

was done by imitation then the same exact matrix as above would be the reductive game.

For a second example, if we thought that our population lived on a 3-regular random graph

and updated itself with death-birth dynamics then we could invert the ON-transform to calculate
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2.6    3.7 
2.9    3.0Gred= (       )2.6    3.5 

3.1    3.0Gred =(       ) Gred ?= (       )

2.6    3.5 
3.1    3.0Geff = (       )

Figure 8.3: The same effective game implemented by three different population struc-
tures and reductive games. From left to right: inviscid population, random 3-regular graph,
experimental in vitro non-small-cell lung cancer.

the reductive game according to Equation 8.10. In this case, the reductive game corresponding to

the above effective game would be:

2.6 3.7

2.9 3.0

 (8.12)

This might not seem like a huge change numerically, but it transforms a Leader game (B >

C > D > A) into a Hawk-Dove game (B > D > C > A). In other words, if the effective Leader

game that Kaznatcheev et al. [119] measured had been implemented in a well-mixed population

then the corresponding reductive game would also be Leader but if it had been implemented in

a slightly spatially structured population then the corresponding reductive game would be Hawk-

Dove. Thus, two qualitatively different reductive games can implement the same abstract effective

game depending on the spatial structure that we abstract over.

Of course, there is no reason to believe that either of these two spatial structures are a good

description of our actual experimental system. Thus, we cannot currently take our measured



180 CHAPTER 8. SPATIAL STRUCTURE AND EFFECTIVE GAMES

Figure 8.4: A hypothetical (left) and empirical (right) measurement of effective fitness
functions. The x-axis is the proportion of type C (cyan) in the left graph and parental (cyan) in
the right graph and the y-axis is the fitness of cyan and magenta types where magenta is type D
for the left graph and resistant for the right graph.

effective game and “push it down” to a particular reductive game implementation. Instead, we

can view nature as implementing some unknown transformation from reductive to effective game,

as described at the end of Section 6.2. Thus, as summarized in Figure 8.3, we have at least

three different potential reductive implementation of the same effective game – and many more are

possible.

This multiple realizability is why effective games are a useful abstraction – the detailed im-

plementation might not matter. But this rich multiple realizability is also a hazard: it means we

need to be careful in our conclusions from and interpretations of reductive games. In Section 6.6,

I already showed that the “interactions” of an effective game can be implemented by very indirect

methods like differences in feeding rate and yield on a single common resource. In the following

two subsections, I will show how space can create (Section 8.4.1) effective non-cell-autonomous

fitness from reductive cell-autonomous fitness; and how space can hide (Section 8.4.2) non-cell-

autonomous token fitness in a cell-autonomous type fitness.

8.4.1 Space can create effective games

Suppose that a scientist was using the game assay [119] from Chapter 7 to measure an effective

game, and got the left graph of Figure 8.4 for the fitness functions of her two types. On the x-axis,

she has seeding proportion of type C and on the y-axis she has fitness. In cyan (lower line) she has

the measured fitness function for type C and in magenta (upper line), she has the fitness function

for type D. The particular fitness scale of the y-axis is not important, not even the x-intercept – I

have chosen them purely for convenience. The only important aspect is that the cyan and magenta
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lines are parallel, with a positive slope, and the magenta above the cyan.

This is not a crazy result to get, compare it to the fitness functions for the Alectinib + CAF

condition measured in Figure 7.4 of Chapter 7 and which I show again at the right of Figure 8.4.

There, cyan is parental and magenta is resistant non-small cell lung cancer. The two lines of best

fit are not exactly parallel, but they are not that far off (they are within the experimental error of

being parallel).

How should the scientist interpret Figure 8.4? Is there a game-like (i.e. non-cell autonomous)

interaction happening there? The answer will depend on if she is asking about effective or reductive

games, and what she knows about the population structure.

In Figure 8.4, there is clearly an effective game happening (i.e., the type fitness is not frequency-

independent). As the proportion of type C increases, both type C and type D benefit. In fact, if we

look at just the fitness functions then the story of a Public Good or a benefit-cost Prisoner’s

Dilemma game would be consistent with this graph. We can think of type C as paying a constant

cost – the cost is the distance between the parallel lines – to produce a public good that benefits

both type C and D cells equally – the benefit is the slope of the parallel lines.

If our scientist was to write down the corresponding game matrix, she would get:

 1 3

−2 0

 (8.13)

where type D corresponds to the first row and column, and type C corresponds to the second

row and column. From this, she would see that this is not a traditional benefit-cost Prisoner’s

Dilemma since we need benefit b = 2 and cost c = 3, while we usually think of traditional PDs

as having b > c. But this would still be a textbook example of a non-cell-autonomous process;

even if not the most standard one. In fact, for the similar Alectinib + CAF condition shown at

right, Kaznatcheev et al. [119] make this conclusion. We say that the fitness functions in this

condition (as well as several other ones that are not close to conforming to parallel lines) are

non-cell-autonomous.

Unfortunately, this is a conclusion about the effective games. And it does not need to hold for

the reductive game.

Suppose that the scientist knows that the effective game she measured is actually implemented

by a reductive game played on a random 3-regular graph with birth-death updating. In this case,

consider taking the token fitness of type D cells to be 1 and the token fitness of type C cells to

be 0 (i.e. each type has constant token fitness independent of who they interact with). This is a

cell-autonomous fitness that most people would not describe as a game-like dynamic. If we insist



182 CHAPTER 8. SPATIAL STRUCTURE AND EFFECTIVE GAMES

on writing down this cell-autonomous fitness as a payoff matrix then we get the reductive payoff

matrix:

1 1

0 0

 (8.14)

Plugging this reductive game into Equation 8.7 for a 3-regular random graph with Birth-Death

updating, results in an effective game given by:

 2 −1

−1 2


1

0

+

 1

−1

 =

 3

−2

 (8.15)

↓1 1

0 0

→ ON3,1(◦) →

 1 3

−2 0

 (8.16)

where the final matrix is the same as Equation 8.13.

In words: two kinds of cells that each have cell-autonomous token fitness at the reductive

level can have non-cell-autonomous type fitness at the effective level if their population is spatially

structured. Spatial structure can create an effective game where there is no reductive game.

When the spatial structure is simple – as it is for the ON-transform – then the resulting effective

game is also relatively simple. I would also expect this general ‘effective game creation’ result to

hold for more complicated and realistic population structures. Except instead of creating a simple

linear effective game of two parallel fitness functions, it could create a much more complicated

non-linear game that depends on the details of the spatial structure itself. In other words, space

on its own can create effective games – maybe even complicated ones. But my general result needs

to be tested in future work that is beyond the scope of this thesis.

8.4.2 Space can hide reductive games

To make things even more difficult: if space can create an effective game from a constant fitness

reductive ‘game’ then space can also hide a reductive game in a constant fitness effective ‘game’.

Consider effective observations where the cell-autonomous type-fitness of type C is 0 and of

type D is 1. This would correspond to the effective ’game’ of

1 1

0 0

 or fC = 1, fD = 0. If we

plug this into equation 8.10 with a 3-regular graph with Birth-Death updating then the resulting
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reductive game is non-cell-autonomous:

1

3

2 1

1 2


1

0

+
1

3

−1

1

 =

1/3

2/3

 (8.17)

↓1 1

0 0

→ ON−1
3,1 (◦) →

 1 1/3

2/3 0

 (8.18)

If our scientist was judging just from the effective fitness function then she might conclude

that the system has a cell-autonomous fitness. But at the reductive level, it would actually have

frequency dependent fitness that is masked by the spatial structure.

These examples show that if we are trying to make reductive statements from effective mea-

surements of spatially-structured populations then we have another complication to consider in

addition to the feeding-functions of Section 6.6. As before, this complication is important even

if we are only interested in broad qualitative conclusions like distinguishing cell-autonomous vs.

non-cell-autonomous processes.

8.5 Operationalizing spatial structure

Of course, I used the 3-regular graphs of the Ohtsuki-Nowak above only for illustrative purposes.

I do not expect them to be useful models for the spatial structure of real experimental systems.

Graphs, in general, seem to be an overly static, restrictive, and – most importantly – difficult to

measure representation for the spatial structure of microscopic systems. Instead, we should think

about what sort of spatial information is relevant and easy to measure and then use that as a

starting point for operationalizing spatial structure. I propose that in this case we let experiment,

rather than convenient existing theory lead. I propose starting with our measurement of effective

games and pushing it down with an operationalization of spatial structure. We can achieve this by

giving an experimental definition of the local environment of cells. This local perspective might

be very different from the perspective that an experimenter has of the system as a whole.

Let us suppose that we are considering a system with two possible strategies A and B. Then

we can define the following functions:

• Let ρA : N× N→ [0, 1] be the distribution over number of type A and type B partners that

a cell with strategy A encounters; i.e. ρ(kA, kB) is the probability of encountering kA many
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cells of type A and kB many cells of type B during the timescale relevant to the calculation

of local fitness. (This is similar to pij in our discussion of the Ohtsuki-Nowak transform in

Section 8.1)

• Let ω̂A : N× N → R be the local fitness function for a cell of type A; i.e. ω̂A(kA, kB) is the

local fitness of an agent of type A that encountered kA many players of type A and kB many

players of type B during the timescale relevant to the calculation of local fitness.

Define ρB , ω̂B analogously for strategy B. This allows us to write down the replicator dynamics at

the level of the whole population as ṗ = p(1− p)Γ(p) where the gain function Γ(p) is given by:

Γ(p) = E(kA,kB) ∼ ρA [ω̂A(kA, kB)]− E(kA,kB) ∼ ρB [ω̂B(kA, kB)] (8.19)

Since ρ{A,B} depends on p, let us name this mapping S(p;~s) 7→ (ρA, ρB) and introduce an

extra state vector ~s which might also change with time according to some general relationship:

~̇s = T (~s; p). This relationship between p,~s and ρ is meant to capture the functional role of space

(or any other discrepancy between the local and global perspectives). The hope is that in practical

settings, ~s is simple or non-existent or the dynamics of ~s can be decoupled from the dynamics of

p by something like a separation of timescales, similar to what happens when using weak selection

in the derivation of Ohtsuki and Nowak [162].

Suppose that we were able to find a system where the equations for ~s can be decoupled from

p. Now, instead of having games on graphs, we will have games on experimentally measurable

correlated frequencies. With this formalism, we can start to operationalize space. The first step is

to measure the gain function Γ(p) as described in Section 6.4.2. But measuring S is more difficult

because it is encoding much more information about the microdynamical structure. A good first

guess might be to take something like a structured core biopsy or time-lapse microscopy and define

an interaction radius r. Then go through taking each cell as a focal agent and count how many

cells of type A and B are within distance r of the focal agent. The result is an empirical estimate

for ρA, ρB . Repeat for different initial p to get as many points of function S as desired. Clearly, if

r is taken as the diameter of the slide then S will be an identity map since p = ρA
ρA+ρB

in that case.

At the other extreme, taking r as less than a cell radius will make S into a constant map with

ρA = ρB = 1. For intermediate values of r, we will potentially have a variance in different local

densities for each focal agent, and picking a good r will depend on trade-offs between the level

of error introduced by this variance versus the level of error that’s introduced in the propagation

from raw gain function to game.

Unfortunately, just like with other effective concepts, this operationalized spatial structure
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might not always have clear microdynamic interpretations. However, it does allow us to go one

step closer to experimentally understanding the effects of spatial structure on populations without

confusing effective and reductive games. In future work, it would be interesting to apply this

method – or one like it – to spatially structured empirical populations like our experiments from

Chapter 7, but such an application is beyond the scope of this thesis.

8.6 Summary

In Chapter 6, I showed the multiple realizability of replicator dynamics – the central algorithm

of evolutionary game theory. In this chapter, I showed the multiple realizability of games due to

spatial structure. In Chapter 6, I defined the notion of reductive games vs. effective games. In this

chapter, we saw that spatial structure is one of the non-trivial transformations that can change a

reductive game into a different effective game. Usually, this transformation is done implicitly from

the bottom-up by starting with an assumed reductive game. I highlighted Kaznatcheev, Scott,

and Basanta [115] as a cancer example of this in Section 8.2. But we can also work in the opposite

direction. We can work top-down by starting with a careful measurement of an effective game

(by, for example, using the game assay from Chapter 7) and pushing it ‘down’ through the spatial

structure to infer a more reductive game. My hope is that this perspective opens paths for new

kinds of empirical work measuring evolutionary games in cancer and other microscopic systems.
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Chapter 9

Conclusion: abstracting the

Darwinian engine

Nothing in evolution or ecology makes sense except in the light of the other

Pelletier, Garant, and Hendry [173]

Let us return to the Darwinian engine that powers evolution. The Darwinian engine in Fig-

ure 9.1a is made of two cycles that together change the distribution of genotypes. On the top, we

have the genesis of new variants via the mutation cycle. On the bottom, we have the struggle for

existence via the development-ecology-selection cycle. This figure is already a simplification of the

kinds of feedbacks that evolutionary biologists care about. But even in this simplification, a lot of

details are hidden in each edge. So in this thesis, I idealized the Darwinian engine further to focus

on specific aspects of its operation. I represent that as the two projections of the Darwinian engine

to the right and down. Figure 9.1b corresponds to Part I and Figure 9.1c corresponds to Part II

of the thesis. In each case, I followed the mathematical imagination of Section 1.3: I idealized one

part of the engine (dashed line) so that I could abstract over the other part. And in each case, we

can divide the projection into a part that correspond to a ‘problem’ (the space on or according-to

which things happen) and another that correspond to an ‘algorithm’ (the dynamics that happen)

as I described in Section 3.5. This idealization, abstraction, and division allowed me to engage the

techniques of theoretical computer science in analyzing the Darwinian engine. In this final chapter,

I want to review and synthesize what we learned from algorithmic biology in this thesis while also

setting forth future directions for this nascent field.

187
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Figure 9.1: Darwinian engine powering (a) eco-evolutionary dynamics alongside two
projections focused on (b) evolution and (c) ecology. The bottom cycle of (a) captures
the struggle for existence (it is inspired by similar figures from presentations by Joachim Krug
and Amitabh Joshi), and the top cycle of (a) captures the genesis of new variants. Panel (b) is
the evolution on fitness landscape projection of (a) that I use for Part I of the thesis. Panel (c)
is the ecology from evolutionary game projection of (a) that I use for Part II of the thesis. The
idealizations that allow the projections are represented by dashed arrows. Dotted lines show how
each projection can be divided into algorithm vs problem. This is the same figure as Figure 1.3.
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9.1 Evolution on fitness landscapes

As Dobzhansky [45] famously quipped in 1964: “Nothing in biology makes sense, except in the

light of evolution.” Given that I want to build an algorithmic biology, it makes sense to first look at

evolution. So for Part I of the thesis (Chapters 2, 3, 4 & 5), I summarized the contribution of both

development and ecology as a fitness function from genotype to scalar fitness. This summary was

made as an idealization, since it replaced the multifaceted idea of fitness by a one-dimensional scalar

(which I discussed the limits of in the next part at the start of Chapter 7). But this idealization

gave certain benefits that opened the door for theoretical abstraction.

1. It allowed me to divide the two cycles of the Darwinian engine into two parts familiar to

computer scientists: problem and algorithm. The edges leading out of the genotype node

serve as the ‘problem’: they are the mutation graph and fitness function that together specify

the fitness landscape. The edges leading into the genotype node serve as the algorithm: they

determine which mutations are considered and selected and thus how the population moves

through the fitness landscape.

2. The view of fitness as scalar, made the set of problems – i.e., the space of all fitness landscapes

– into a manageable and analyzable space. In Chapters 2, 4 and Section 3.2 I divided fitness

landscapes into three coarse classes of smooth, semismooth, and rugged landscapes based on

the maximum allowed epistasis. In the rest of Chapters 3 and 5, I focused on the more fine-

grained epistatic structure by introducing the idea of gene-interaction networks (or valued

constraint satisfaction problem instances) as a representation of fitness landscapes.

3. By defining families of fitness landscapes as ‘problems’, I could now analyze the performance

of arbitrary evolutionary dynamics as algorithms. In Chapter 2, I introduced my theory of

hard landscapes by noting that even local fitness peaks can take exponentially long to reach

in some families of fitness landscapes. This has important consequences for open-ended evo-

lution and various biological puzzles around adaptationism. In Chapter 4, I formalized my

theory and showed that hard landscapes exist for progressively more general algorithms;

starting from fittest-mutant and random fitter-mutant strong-selection weak-mutation dy-

namics, to any adaptive dynamic, to – finally – any evolutionary dynamic.

4. Since hard landscapes exist, we can no longer take the easiness of landscapes as a given.

Instead, we need to formally prove that any given family of landscapes is easy or not for

some set of evolutionary dynamics. So in Chapter 5, I developed a new proof technique of
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encouragement paths to show that any fitness landscape representable by a binary Boolean

tree-structured gene-interaction network is easy: such a landscape cannot contain an adaptive

path longer than
(
n+1

2

)
fixations (Theorem 5.15). I also showed that this new proof technique

is strictly more powerful than prior techniques based on span arguments (Section 5.1).

5. The existence of provably hard and provably easy families of fitness landscapes, pushed me

to define complexity and simplicity classes of fitness landscapes in Section 5.4. This allowed

me to refine the easy-to-hard spectrum and start to populate a taxonomy of easiness and

hardness for families of fitness landscapes based on the structure of their gene-interaction

networks in Figure 5.1.

Refining this taxonomy is the most natural next step for computer scientists passionate about

theoretical abstraction. For example, in Section 4.4, I gave a recursive construction for winding

semismooth fitness landscapes that are hard for fittest-mutant strong-selection weak-mutation.

But I also showed in Section 4.5 that this landscape cannot be represented by a gene-interaction

networks of bounded treewidth. In contrast, Cohen et al. [32] gave an explicit construction for

landscapes with gene-interaction networks of treewidth 7 that are hard for fittest-mutant SSWM

but are not semismooth. This raises the question: are there hard semismooth fitness landscapes

with gene-interaction networks of bounded treewidth?

The most prominent open question in the taxonomy, however, is the exact hardness of the

classic NK-model with K = 1. For K = 0 it is a smooth landscape and, for K = 2 it is PLS-

complete (Theorem 4.25). With K = 1, the classic NK-model differs by a single Boolean constraint

from tree-structured gene-interaction networks (Proposition 3.11), so I suspect it is a very easy

fitness landscape. Specifically, I conjecture that all adaptive paths are short in the biallelic classic

NK-model with K = 1, but this cannot be established by the encouragement path arguments

from Section 5.2. Future work would need to extend the encouragement path arguments, maybe

combining them with the span arguments, to prove this conjecture.

Unfortunately, such questions might not be immediately exciting for a biologist. For biologists, a

more pressing issue is to push toward empirical abstraction and learn what kind of gene-interaction

networks occur in nature. In Section 3.7.1, I provided a simple algorithm for inferring gene-

interaction networks from local fitness landscapes. Future works needs to extend this algorithm to

handle noisy measurements and apply it to experimental systems. Once we have measurements of

some empirical gene-interaction networks, we can see where they fit into the taxonomy of easiness

and hardness. This will allow us to learn if the ultimate constraint of computational complexity is

also a major (i.e., ubiquitous) constraint on evolution.
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9.2 Ecology from evolutionary games

A half-century after Dobzhansky [45], Grant and Grant [69] responded: “Nothing in evolution

makes sense, except in the light of ecology.” So for Part II of the thesis (Chapters 6, 7 & 8), I

critically examined the idealization of fitness as a scalar from Part I that had eliminated biotic

interactions. To represent the frequency-dependent fitness that fitness landscapes had idealized

away, we combined genotypes and phenotypes as just types, summarized ecology as an evolution

game and idealized the selection-mutation process as replicator dynamics. This framing of evolution

opened the door for empirical abstraction and direct measurement.

1. This framing let me combine the two cycles of the Darwinian engine into one and then, as

in Part I, I divided that one cycle into two parts familiar to computer scientists: problem

and algorithm. But in this case, it was the algorithm of evolution that I idealized as repli-

cator dynamics. Although, as I showed in Chapter 6, this idealized algorithm of replicator

dynamics has many implementations, both reductive ones that are usually linked to com-

puter simulations of agent-based models (Section 6.3) and effective ones that can linked to

experiment (Section 6.4).

2. By asking “what is the problem ‘solved’ by this idealized algorithm”, I was able to abstract

over ecology – summarizing the biotic ecology as an evolutionary game. This allowed me to

define the game assay in Chapter 7 for summarizing ecology by directly measuring effective

evolutionary games in microscopic systems. In Chapter 8, I showed that these abstract

effective games are multiply realizable by different combinations of reductive games and

spatial structure.

3. By having a game assay, I could directly measure the ecology between drug-sensitive and drug-

resistant types of non-small cell lung cancer in Chapter 7. The result across four different

conditions was four quantitatively distinct effective games of two qualitatively distinct kinds:

Leader and Deadlock (Section 7.9). Since the qualitative game shift corresponded to the

introduction of drug or the removal of cancer-associated fibroblasts, this observation provided

the first empirical realization for a previously theoretical postulate of EGT in oncology: we

can treat not just the player but also the game (Section 7.10). But the measurements

also challenged a common theoretical postulate that drug-resistance is a neutral or costly

adaptation outside of drug, since in our system, it carried a ‘negative cost’ (Section 7.5).

The Leader and Deadlock games have not previously been studied by the EGT in oncology

community. So the observation of them in an experimental system will hopefully motivate new
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theory. The reason that Leader and Deadlock might not have appeared before is due to the

focus of prior work being on reductive games, and the measurements being of effective games. It

is important to not over-interpret effective games as reductive games. In particular, one should

be careful given that the abstract effective games are multiply realizable by different combinations

of reductive games and spatial structure. To connect better to the existing reductive literature,

future work must push the abstraction of effective games ‘down’ through spatial structure (as I

discussed briefly in Section 8.5).

So far, we have only measured four games of two qualitative types. Going forward, it is

important to expand our catalog of evolutionary games, both in cancer and other microscopic

systems. I am already working on this with two different teams from the Moffitt Cancer Center

and Cleveland Clinic. The real test for the usefulness of effective games will be the outcome of

these further measurements. In particular, once we know the games corresponding to many different

cancers in many different conditions, will we see useful patterns or will we have to abandon games

for another representation of the biotic ecology? Of particular importance to the ‘don’t treat the

player, treat the game’ approach of EGT in oncology, is for future work to gather enough game

measurements to start looking at drugs as game transforms (i.e., as functions that take one effective

game as input and give another effective game as output). This will require both theoretical and

empirical developments.

Finally, although the experimental part of the game assay is straightforward to carry out for

in vitro systems, it is not clear how to translate this work to the patient. Future work will need

to develop analogs to the game assay for systems where a series of different initial proportions of

types cannot be seeded. In particular, it is important to build techniques for learning evolutionary

games from the sort of sparse historic data that might be available in a patient history. And since

EGT is not limited to just microscopic systems, I hope that such techniques can also be applied to

macroscopic systems with sparse historic data like human evolution. It would be nice to be able

to measure the evolutionary games that might have shaped the evolution of human brains and

behavior instead of just assuming that everything is a Prisoner’s Dilemma [117].

9.3 Unifying evolution and ecology

Beyond the opportunities for further development described above, a key remaining challenge is

to thoroughly unify evolution and ecology because – as Pelletier, Garant, and Hendry [173] noted

– “nothing in evolution or ecology makes sense, except in light of the other.” Future work can

aim to look at the Darwinian engine through the algorithmic lens in a way that captures both
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the rich combinatorial structure of evolution on fitness landscapes (Part I) and the ecological

feedback of evolutionary games (Part II). In Kaznatcheev [101], I have started working in this

direction by defining game landscapes as an ecological extension of Valiant [221]’s algorithmic

Darwinism. The major practical difficulty is to find effective ways to combine the fitness-as-function

approach of evolutionary game theory with the vast size and rich combinatorial structure of fitness

landscapes. Extending evolutionary games from a small number of types to an exponentially large

landscape, makes it impossible to carry out a single exhaustive measurement like the game assay

from Chapter 7. So akin to the local fitness landscapes, the next empirical step on this path is to

find ways to operationalize and measure local game landscapes.

The next theoretical step on this path is to find a compact representation for game landscapes

akin to the representation of fitness landscapes by gene-interaction networks from Chapter 3. The

goal would be to find a representation that is both theoretically rich and still learnable from local

game landscapes in the same way that gene-interaction networks are learnable from local fitness

landscapes (Section 3.7.1). If this could be achieved, then future research could combine both

evolution and ecology, and also theoretical and empirical abstraction. That way, we can hope

to one day say that nothing in biology makes sense, except in the light of evolution and ecology

focused by the algorithmic lens.
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[130] M. Li and P. M. Vitányi. “Average case complexity under the universal distribution equals

worst-case complexity”. In: Information Processing Letters 42.3 (1992), pp. 145–149.

[131] X.-Y. Li, C. Pietschke, S. Fraune, P. M. Altrock, T. C. Bosch, and A. Traulsen. “Which

games are growing bacterial populations playing?” In: Journal of The Royal Society Inter-

face 12.108 (2015), p. 20150121.

[132] E. Lieberman, C. Hauert, and M. A. Nowak. “Evolutionary dynamics on graphs”. In: Nature

433.7023 (2005), pp. 312–316.

[133] A. Livnat, C. Papadimitriou, J. Dushoff, and M. W. Feldman. “A mixability theory for the

role of sex in evolution.” In: Proc. Natl. Acad. Sci. USA 105 (50 2008), pp. 19803–19808.

[134] A. Livnat and C. Papadimitriou. “Sex as an algorithm: the theory of evolution under the

lens of computation”. In: Communications of the ACM 59.11 (2016), pp. 84–93.

[135] E. R. Lozovsky, T. Chookajorn, K. M. Brown, M. Imwong, P. J. Shaw, S. Kamchonwong-

paisan, D. Neafsey, D. Weinreich, and D. L. Hartl. “Stepwise acquisition of pyrimethamine

resistance in the malaria parasite.” In: Proc. Natl. Acad. Sci. USA 106 (29 2009), pp. 12025–

12030.

[136] M. Lynch, R. Bürger, D Butcher, and W. Gabriel. “The mutational meltdown in asexual

populations”. In: Journal of Heredity 84.5 (1993), pp. 339–344.

[137] W. Maciejewski and G. J. Puleo. “Environmental evolutionary graph theory”. In: Journal

of theoretical biology 360 (2014), pp. 117–128.

[138] R. C. MacLean and I. Gudelj. “Resource competition and social conflict in experimental

populations of yeast”. In: Nature 441.7092 (2006), p. 498.

[139] R. Maddamsetti, R. E. Lenski, and J. E. Barrick. “Adaptation, clonal interference, and

frequency-dependent interactions in a long-term evolution experiment with Escherichia

coli”. In: Genetics 200.2 (2015), pp. 619–631.

[140] T. R. Malthus. An Essay on the Principle of Population. J. Johnson, London, 1798.

[141] F. Markowetz. “All biology is computational biology”. In: PLoS Biology 15.3 (2017), e2002050.

[142] A. Marusyk, D. P. Tabassum, P. M. Altrock, V. Almendro, F. Michor, and K. Polyak.

“Non-cell autonomous tumor-growth driving supports sub-clonal heterogeneity”. In: Nature

514.7520 (2014), p. 54.



206 REFERENCES

[143] A. Marusyk, D. P. Tabassum, M. Janiszewska, A. E. Place, A. Trinh, A. I. Rozhok, S. Pyne,

J. L. Guerriero, S. Shu, M. Ekram, et al. “Spatial proximity to fibroblasts impacts molecular

features and therapeutic sensitivity of breast cancer cells influencing clinical outcomes”. In:

Cancer Research 76.22 (2016), pp. 6495–6506.

[144] J. Matousek and T. Szabo. “RANDOM EDGE can be exponential on abstract cubes.” In:

Advances in Mathematics 204 (1 2006), pp. 262–277.

[145] H Matsuda, N Tamachi, A Sasaki, and N Ogita. “A lattice model for population biology”.

In: Mathematical topics in population biology, morphogenesis and neurosciences. Springer,

1987, pp. 154–161.

[146] J. Maynard Smith. Evolution and the Theory of Games. Cambridge University Press, 1982.

[147] J. Maynard Smith. George Price’s theorem and how scientists think. Web of Stories: https:

//www.webofstories.com/play/john.maynard.smith/45. 1997.

[148] E. Mayr. “Cause and effect in biology”. In: Science 134.3489 (1961), pp. 1501–1506.

[149] J. McNamara. “Towards a richer evolutionary game theory”. In: J, R. Soc., Interface 10

(88 2013).

[150] M. Mediavilla-Varela, K. Boateng, D. Noyes, and S. J. Antonia. “The anti-fibrotic agent

pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts”.

In: BMC Cancer 16.1 (2016), p. 176.

[151] L. M. Merlo, J. W. Pepper, B. J. Reid, and C. C. Maley. “Cancer as an evolutionary and

ecological process”. In: Nature Reviews Cancer 6.12 (2006), pp. 924–935.

[152] R. L. Millstein. “Populations as individuals”. In: Biological Theory 4.3 (2009), pp. 267–273.

[153] B. Monien and T. Tscheuschner. “On the Power of Nodes of Degree Four in the Local Max-

Cut Problem”. In: Algorithms and Complexity. Ed. by T. Calamoneri and J. Diaz. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 264–275. isbn: 978-3-642-13073-1.

[154] P. A. P. Moran. “Random processes in genetics”. In: Proceedings of the Cambridge Philo-

sophical Society. Vol. 54. 1958, p. 60.

[155] E. P. Murchison, D. C. Wedge, L. B. Alexandrov, B. Fu, I. Martincorena, Z. Ning, J. M.

Tubio, E. I. Werner, J. Allen, A. B. De Nardi, et al. “Transmissible dog cancer genome re-

veals the origin and history of an ancient cell lineage”. In: Science 343.6169 (2014), pp. 437–

440.

[156] M. Nanda and R. Durrett. “Spatial evolutionary games with weak selection”. In: Proceedings

of the National Academy of Sciences (2017), p. 201620852.

https://www.webofstories.com/play/john.maynard.smith/45
https://www.webofstories.com/play/john.maynard.smith/45


REFERENCES 207

[157] D. Nichol, P. Jeavons, A. G. Fletcher, R. A. Bonomo, P. K. Maini, J. L. Paul, R. A. Gatenby,

A. R. Anderson, and J. G. Scott. “Steering evolution with sequential therapy to prevent the

emergence of bacterial antibiotic resistance”. In: PLoS computational biology 11.9 (2015),

e1004493.

[158] A. E. Noether. “Invariante Variationsprobleme”. In: Nachr. D. König. Gesellsch. D. Wiss.

918.3 (1918), pp. 235–257.

[159] M. A. Nowak and R. M. May. “Evolutionary games and spatial chaos”. In: Nature 359.6398

(1992), pp. 826–829.

[160] U. Obolski, Y. Ram, and L. Hadany. “Key issues review: evolution on rugged adaptive

landscapes”. In: Reports on Progress in Physics 81.1 (2017), p. 012602.

[161] T. Ohta. “The nearly neutral theory of molecular evolution”. In: Annual Review of Ecology

and Systematics 23 (1992), pp. 263–286.

[162] H. Ohtsuki and M. A. Nowak. “The replicator equation on graphs”. In: Journal of theoretical

biology 243.1 (2006), pp. 86–97.

[163] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak. “A simple rule for the evolution

of cooperation on graphs and social networks”. In: Nature 441.7092 (2006), pp. 502–505.

[164] J. Orlin, A. Punnen, and A. Schulz. “Approximate local search in combinatorial optimiza-

tion”. In: SIAM J. Comput. 33 (5 2004), pp. 1201–1214.

[165] H. A. Orr. “The distribution of fitness effects among beneficial mutations”. In: Genetics

163.4 (2003), pp. 1519–1526.

[166] H. A. Orr. “The genetic theory of adaptation: a brief history.” In: Nature Reviews. Genetics

6 (2005), pp. 119–127.

[167] H. Orr. “The population genetics of adaptation: the adaptation of DNA sequences.” In:

Evolution (56 2002), pp. 1317–1330.

[168] S. H. Orzack and E. Sober. Adaptationism and optimality. Cambridge University Press,

2001.

[169] J. Otwinowski, D. M. McCandlish, and J. B. Plotkin. “Inferring the shape of global epista-

sis”. In: Proceedings of the National Academy of Sciences 115.32 (2018), E7550–E7558.

[170] S.-H. I. Ou, J. S. Ahn, L. De Petris, R. Govindan, J. C.-H. Yang, B. Hughes, H. Lena,

D. Moro-Sibilot, A. Bearz, S. V. Ramirez, et al. “Alectinib in crizotinib-refractory ALK-

rearranged non–small-cell lung cancer: a phase II global study”. In: Journal of Clinical

Oncology 34.7 (2015), pp. 661–668.



208 REFERENCES

[171] A. Pavlogiannis, J. Tkadlec, K. Chatterjee, and M. A. Nowak. “Construction of arbitrarily

strong amplifiers of natural selection using evolutionary graph theory”. In: Communications

Biology 1.1 (2018), p. 71.

[172] C. S. Peirce. “Prolegomena to an apology for pragmaticism”. In: The Monist 16.4 (1906),

pp. 492–546.

[173] F. Pelletier, D. Garant, and A. Hendry. Eco-evolutionary dynamics. 2009.
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